
Relationship Between Heart Rate Variability and Angiotensinogen Gene
Polymorphism in Diabetic and control individuals

Faezeh Marzbanrad, Brett Hambly, Ethan Ng, Mikhail Tamayo, Slade Matthews,
Chandan Karmakar, Ahsan H. Khandoker, Marimuthu Palaniswami, Herbert F. Jelinek

Abstract— Heart Rate Variability (HRV) is extensively used
to investigate general Autonomic Nervous System (ANS) func-
tion and is affected by many factors including age, gender,
pathology such as diabetes and genetic polymorphisms. One
of these genetic polymorphisms is the Angiotensin Convert-
ing Enzyme (ACE) polymorphism corresponding to insertion
(I) or deletion (D) of a 287-base pair sequence of DNA
in intron 16 of the ACE gene (rs4340). Some studies have
addressed the relationship between HRV and D/D, I/D and
I/I ACE polymorphism while others combined I/D and I/I
ACE groups. In this study HRV is determined for diabetic
and control individuals with different ACE polymorphism
considering either separate or combined I/D and I/I genotypes.
Linear time domain parameters, entropy, low frequency and
total power of HRV were found to be significantly different
between diabetic and control individuals with combined I/I and
I/D ACE polymorphism, while only entropy was different for
diabetic and control subjects with D/D ACE genotype. Separate
analysis of I/I and I/D genotypes was preferred for a thorough
investigation of HRV and ACE polymorphism, as the combined
analysis masked some differences in HRV parameters such as
Poincaré plot between ACE polymorphisms and diabetes status.
Furthermore, a separate analysis demonstrated that most of the
significant differences for HRV were between the diabetic group
with I/I genotype and I/D and D/D groups.

I. INTRODUCTION

Hear Rate Variability (HRV) is used as an index of the
Autonomic Nervous System (ANS) general function and
its role in controlling heart rate [1]. HRV is characterized
by linear or nonlinear time domain or frequency domain
features.
Time domain features of HRV include mean and standard
deviation of normal inter-beat (NN) intervals (SDNN) and
the root-mean square of NN intervals (RMSSD) [2], a
reduction of which was reported to lead to a higher mortality
risk in conditions associated with an autonomic imbalance
[3], [4]. Tone- Entropy (T-E) analysis is also a time domain
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measure, which provides information both on sympatho-
vagal balance and total activity of the heart rate over the
recording period [5]. Poincaré plot provides a more detailed
HRV analysis by demonstrating the patterns of heart rate
dynamics in the Cartesian plane and representing its long
and short-term variability [6].
The use of frequency domain measures including the high
frequency component (HF, above 0.15 Hz), low (LF, 0.04
- 0.15 Hz) and very low (VLF, 0.003-0.04 Hz) frequency
component, and their ratio (LF/HF) improved the sensitivity
of identifying pathological ANS imbalance [7], [8].
HRV can is affected by various factors such as age, gender
and some diseases including diabetes [9], [10]. For example
HRV parameters including SDNN, PNN50% and RMSSD in
diabetic patients are significantly different from control [10].
Genetic factors also affect HRV [11], [12] which include
the Angiotensin Converting Enzyme (ACE) polymorphism
corresponding to insertion (I) or deletion (D) of a 287-base
pair sequence of DNA in intron 16 of the ACE gene (rs4340)
[13] and its influence on HRV has been addressed in a
number of studies [14]–[17]. These studies analyzed HRV for
either three groups: D/D, I/D, I/I genotypes or two groups:
D/D and combined I/D and I/I genotypes [14], [16], [18].
In the current paper we discuss the influence of ACE geno-
type on HRV depending on whether the subjects were divided
into three or two ACE genotype groups, in conjunction with
the effect of diabetes.
The paper is organized as follows. Section II describes the
methods, including details about subjects, genotyping, group-
ing, preprocessing and HRV analysis. Section III presents
the results of HRV analysis and comparison of groups with
different ACE genotypes and diabetic status. Section IV is
devoted to the discussions on findings and comparisons.
Conclusion can be found in Sections V.

II. METHODS

A. Subjects

ECG recordings, ACE genotypes, diabetes details and
demographic information were collected from 231 partici-
pants at the Charles Sturt University Diabetes Complications
Screening Initiative (DiScRi). Written, informed consent
approved by the respective local clinical research ethics
committees, was provided prior to participating in this study.
Five cases with type I diabetes or prediabetes were excluded
and only Type II diabetes (T2D) and normal subjects were
studied. Equal tachogram length of 500 RR intervals was
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TABLE I
DEMOGRAPHIC DETAILS OF DIFFERENT GROUPS.

Groups Total No. Gender No. (%) Age (years)

D/D, control 38 M:16(42%)- F:22(58%) 67 ± 10
D/D, T2D 16 M:6(38%)- F:10(62%) 66 ± 10

I/D, control 91 M:39(43%)- F:52(57%) 66 ± 11
I/D, T2D 36 M:19(53%)- F:17(47%) 69 ± 8

I/I, control 31 M:11(35%)- F:20(65%) 65 ± 10
I/I, T2D 13 M:5(38%)- F:8(62%) 70 ± 7

I/D+I/I, control 123 M:50(41%)- F:73(59%) 66 ± 11
I/D+I/I, T2D 49 M:24(49%)- F:25(51%) 70 ± 7

Age is shown as mean ± SD.

analyzed for each subject and five cases were excluded
because of insufficient tachogram length.

B. Genotyping

The QIAamp DA blood mini kit (from Qiagen) was
used to extract genomic DNA from frozen blood samples,
according to the manufacturer’s instructions. Seventy five
microliter of elution buffer was used instead of 200 microliter
as the only modification to the protocol in order to obtain
a more concentrated solution of DNA. The extracted DNA
was then genotyped using the triple primer method [19] and
electrophoresis using a 6% polyacrylamide gel.

C. Groups

Subjects were divided in two ways; six groups with ACE
genotypes of D/D, I/D and I/I, and all three groups further
divided in to those with T2D and control; or four groups in
which I/I and I/D were combined and again subdivided into
T2D and control. The number of subjects in each group is
summarized in table I.

D. ECG recording and preprocessing

ECGs were recorded by trained staff on Powerlab using
the sampling rate of 400 Hz and a notch filter at 50 Hz
(ADInstruments, Sydney) from a lead II configuration. Pa-
tients rested for 5 minutes before measurement and data were
collected between 9-11 am for a period of 10 or 20 minutes
from 231 individuals while resting in a supine position. The
ECGs were edited using the MLS310 HRV module as part
of the Powerlab Chart recording software (ADInstruments,
Sydney). The RR intervals were determined as the time
difference between two successive R peaks in seconds using
the method proposed by Pan and Tomkin [20].
Automated adaptive preprocessing was then employed to
detect and replace the false beats. The process was performed
in three steps described in [21]. First the obvious errors
which were shorter than 200 ms long RR intervals were
deleted. Then an adaptive percent filter was applied by
passing the sequence through a binomial filter and obtaining
the adaptive mean and standard deviation (SD) values for
each RR interval. Finally the adaptive controlling filter was
applied to the resulting sequence and the mean and SD were
calculated for each RR interval. Step 2 and 3 identified

further ectopic beats, which were then replaced by the
respective value of the filtered sequence [21].

E. HRV analysis

1) Conventional time and frequency domain methods:
Several time domain HRV features such as: mean and SD
of RR intervals (SDNN) and the square root of the mean
squared difference of the successive RR intervals (RMSSD)
were used for analysis [2]. Furthermore, spectral powers in
the low frequency (PLF ) band (0.04-0.15 Hz), high fre-
quency (PHF ) band (0.15-0.40 Hz), their ratio (PLF /PHF )
and total power (TP) were analyzed [22]. Power spectral
density (PSD) was obtained using Welch’s method [23].

2) Spectral entropy: Spectral entropy (SE) was calculated
based on VLF (0.003-0.04 Hz), LF and HF powers as follows
[24]:

SE = −PV LF × log2(PV LF )−
PLF × log2(PLF )− PHF × log2(PHF )

(1)

3) Poincaré plot indices: The Poincaré plot provides an
intuitive display of the dynamic properties of a system from
time series. It is characterized by two indices; the width
(SD1) and the length (SD2) of the plot which represent long
and short-term variability of the nonlinear dynamic system
[6]. SD1, SD2 and the ratio SD1/SD2 of the RR intervals
were calculated for each subject.

4) Tone-entropy analysis: The difference of the consec-
utive RR intervals (RR ≡ (RR1, RR2, ..., RRN )) corre-
sponds to heart rate acceleration or inhibition. The percent-
age index (PI) was calculated as the percentage of the
difference of two successive RR intervals divided by the
first one and is positive for accelerations (PI > 0) and
negative for inhibitions (PI < 0). Tone was derived from the
first order moment of the (PI) and entropy was calculated
from the probability distribution of PI , through Shannon’s
formula [25] to evaluate the total variations of heart period.

F. Statistical analysis

Results were expressed as median, 25% and 75% quartiles.
A non-Gaussian distribution of the variables was found by
the Chi-square goodness-of-fit test, the Kruskal-Wallis (KW)
test was employed as a non-parametric statistical analysis
method to compare HRV features across groups. The p-value
of less than 0.05 was assumed significant. Mann-Whitney-
Wilcoxon (MWW) was used as the non-parametric post-
hoc test for pairwise comparison of HRV features between
groups.

III. RESULTS

The KW test was applied to the HRV features from the
subjects in six and four groups. Mean RR, SDNN, RMSSD,
SD1, SD2, LF power, total power, spectral entropy and
entropy were significantly different (p < 0.05) across six
groups. Only SDNN, RMSSD, SD1, SD2, total power and
entropy were significantly different across the four groups,
while mean RR, LF power and spectral entropy were no
longer different when I/D and I/I groups were combined.
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TABLE II
P-VALUES OF KRUSKAL-WALLIS TEST ON VARIOUS HRV FEATURES

COMPARED FOR SIX AND FOUR GROUPS.

HRV feature Six group comparison Four group comparison

Mean RR 0.0231* 0.1175
SDNN 0.0170* 0.0439*

RMSSD 0.0436* 0.0444*
SD1 0.0436* 0.0444*
SD2 0.0168* 0.0452*

LF power 0.0206* 0.0802
Total power 0.0041* 0.0131*

Spectral entropy 0.0206* 0.0802
entropy 0.0283* 0.0068*

The significant p-values p < 0.05 are marked by *.

As shown in table II, except for entropy, the p-values were
smaller for six groups compared to 4 groups.
Results of the post-hoc tests for the significant features are
shown in figure 1. According to four group pairwise com-
parison for SDNN, RMSSD and total power, the difference
between T2D and control groups was significant for the
combined I/D and I/I ACE genotypes. Pairwise comparison
for Poincaré indices shows that the I/I group with T2D
was significantly smaller than the indices of other groups
but these differences were masked when this group was
combined with the I/D group. Overall based on the all HRV
features shown in figure 1, except for entropy, the I/I group
with T2D was the most significantly different from the other
genotype groups stratified by T2D and control.

IV. DISCUSSION

Results of comparing HRV for different ACE genotypes
in conjunction with diabetic status indicate that both can
affect HRV and it is necessary to consider them together
for analysis. For example Poincaré indices, LF power
and spectral entropy of the group with I/I ACE genotype
and T2D was different from all other groups, while the
group with I/I ACE genotype but control, or other ACE
polymorphisms plus T2D groups were not significantly
different.
SDNN and RMSSD were found to be significantly different
between D/D and combined I/D and I/I groups in an earlier
study [14]. The results of the current study uncovered these
differences in more detail by separating I/I and I/D and
considering the diabetes status. For example SDNN of the
I/I group with T2D was different from the I/D group with
T2D, and this difference cannot be shown if these two
groups are combined. Furthermore the SDNN of the D/D
group is different from the I/I group only in conjunction
with T2D, which indicates the importance of considering
the diabetic status.
Different from the previous study by Busjahn et al. [14],
the HF power of HRV was not significantly different across
the groups. One of the differences of that study with the
current one is the age range, which was 34±14 and 33±14
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Fig. 1. Median, 25% and 75% quartiles of different significant HRV
features for 6 groups and 4 groups. The significantly different pairs are
marked by triangular pointers.

for the different groups in Busjahn’s study, while it ranged
from 65±10 to 70±7 for the groups in the current paper.
According to a study by Stein et al. HF is significantly
different for these different age groups and thus our older
group may have masked the effect of genotype or diabetes
status [26]. Another difference of the current study with
previous ones is that automated preprocessing is used
while manual corrections were performed in earlier studies.
Preprocessing can also affect the HRV results as shown in
our previous studies but automated preprocessing allows
a more robust comparison between studies as the process
is repeatable unlike when using subjective ectopic beat
removal, which has a tendency for intra and inter-rater
differences [17].

V. CONCLUSION
In this paper HRV was analyzed for individuals with differ-

ent ACE polymorphism and diabetic status. Results indicated
that both diabetes and ACE genotypes affect HRV features
including: mean RR, SDNN, RMSSD, Poincaré indices, LF
power, total power, entropy and spectral entropy. Therefore
it is necessary to consider both factors together for HRV
analysis. Comparison of I/I and I/D groups provides more
details compared to analysis of the combined group. The I/I
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group with T2D had the most different HRV compared to
others and the differences of Poincaré indices of this group
with others are masked when it is combined with I/D.
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