
  

 

Abstract— Visualization models can assist in understanding 

the complex pattern of disease, where the signs may be buried 

in complex data. In this work we propose a new method for 

visualization of data derived from Heart Rate Variability 

(HRV) analysis, to indicate whether a person has developed, or 

is developing, signs of definite Cardiac Autonomic Neuropathy 

(CAN). Here, the visualizations are compared with actual data 

recorded from people attending a diabetes clinic with and 

without definite CAN. Indications from the new visualization 

technique are compared to the results of established diagnostic 

measures using the Ewing battery of tests. We find the 

proposed method to offer useful insights into this disease, as 

rather than relying upon a binary yes/no decision, it offers a 

comprehensive picture of the complexity of this disease. 

I. INTRODUCTION 

Visualization of multi-feature clinical data requires a 
comprehensive design process for the development of an 
integrated display, which is effective, informative and 
enhances clinical decision making [1]. Visualization is a 
function of available diagnostic trends and aesthetics, which 
requires transposition from one or many data sources, and 
combines disparate data into a workable presentation [2]. 
Multigraphs, sparklines or box plots are some approaches, 
which allow representation of co-varying features while 
showing normal ranges for test results [3]. In clinical 
practice, new results from many sources are generated 
systematically over time, depending on the patient and 
treatment protocol, and require correct interpretation and 
follow-up. Appropriate visualization of this complex data 
allows easy comparison between patient reviews over a 
period of time. Visualization of multi-domain clinical data 
can also be interactive and multi-dimensional, but for all 
types of visualization, the most important aspects are that 
they promote exploration of the data, promote easy 
monitoring, and lead to the discovery of insights of relevance 
for the patient as well as for the clinician [4]. 

Cardiac Autonomic Neuropathy (CAN) is a disease that 
involves nerve damage. This leads to abnormal control of the 
heart rate, and is therefore potentially detectable using Heart 
Rate Variability (HRV). CAN disrupts the normal rhythm 
modulation of the heart, and may manifest in arrhythmias and 
heart attack. Early detection of CAN has the potential to 
improve treatment outcomes. In previous work [5], [6] we 
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have shown that advanced measures of HRV entropy can be 
useful in detecting CAN. Here we extend this work by 
providing a new visualization technique to assist clinicians in 
interpreting multi-feature HRV results. 

HRV is well known as an indicator of the regulation of 
the heart [7]. A typical ECG signal is shown in Figure 1. The 
most reliable feature that can be obtained from such a signal 
is the interval between successive R peaks, known as the RR 
interval, or inverse of the heart rate. This is used to determine 
HRV.  

 

Figure 1. Normal ECG recording showing RR interval. 

 

The natural rhythm of the human heart is subject to 

variation that is believed to indicate the health of the 

cardiovascular system, in that too much or too little 

variability between beats increases the risk of arrhythmia 

[8]. RR intervals are obtained from the recorded ECG and 

subjected to further analysis through a variety of algorithms 

in order to yield variables with good discriminant power [7].  

A. Time domain measures 

Time domain measures include the mean and standard 

deviation of the RR intervals (SDNN) recorded. The number 

of pairs of successive intervals that differ by more than 

50ms, divided by the total number of intervals, yields a 

parasympathetic measure (pNN50%). The Root Mean 

Square of Successive Differences (RMSSD) and the 

triangular index (Triang. index) are also parasympathetic 

measures. The triangular interpolation of the interval 

histogram (TINN) is the estimated width of the density 

distribution. This is believed to be sensitive to physical and 

emotional load, or to the intensity of the sympathetic 

nervous system tone. 

The Poincaré plot is a visual representation of the time 

series and is constructed by plotting each consecutive RR 

interval as a point where y = RR(t) and x = RR(t-1). From 

this plot a fitted ellipse leads to estimating SD1 (short term 

correlation) and SD2 (long term correlation) [10], [11] 
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(Figure 2). An extension is the Recurrence Plot, which 

represents a sequence of length n as a point in n-dimensional 

space, then represents similar pairs as points on a two-

dimensional space. The Recurrence Rate (REC) is the 

density of these similar points, Determinism (DET) is the 

percentage of recurring points, identified by diagonal lines, 

and Lmean is the mean length of diagonal lines exceeding a 

threshold. 

 

 

 
Figure 2. Poincaré plot for a sequence of RR intervals 

allows the estimation of SD1 and SD2. 

 

B. Frequency domain methods  

Frequency domain methods divide the spectral distribution 

into very low, low and high frequency regions (Figure 3). 

Low frequency power (LF) is believed to be indicative of 

both parasympathetic and sympathetic activity. High 

frequency (HF) is indicative of parasympathetic activity. 

Very Low Frequency (VLF) amplitude is closely connected 

with psycho-emotional state and functional condition of the 

brain [11]. Other work [12] has shown the important 

meaning of VLF - range analysis, and that the capacity of 

VLF fluctuations of HRV is a sensitive indicator of 

management of metabolic processes and reflects deficit 

energy states. The ratio of low to high frequency 

components, which is indicative of sympathovagal balance, 

may also be calculated as well as the total power [7]. A 

component may also be divided by the total power, to 

express it in normalized units (n.u.).  

C. Non-linear measures  

Non-linear measures include Detrended Fluctuation 
Analysis (DFA), fractal dimension, symbolic dynamics and 
entropy measures such as Sample Entropy and Renyi 
Entropy. DFA is an estimate of the fractal correlation of the 
RR interval series, and provides an exponent expressing 
short-term correlations (alpha1), and another expressing 
long-term correlations (alpha2). The correlation dimension 

(D2) of fractal analysis was also used. Renyi entropy H is a 
generalization of the Shannon entropy: 

 

where pi is the probability that X =x and α is the order of 
the entropy measure. This is the parameter that is varied to 
produce the multiscale entropy.  
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Figure 3. Power spectrum of RR intervals showing VLF, 

LF and HF regions. 
 

HRV analysis associated with CAN has as yet not been 
investigated for multi-feature visualization, despite literature 
on HRV analysis covering some twenty or more features 
[13], [8]. The Poincare Map or the Power Spectrum 
distribution, as shown in Figure 2 and 3, are common 
visualizations of HRV, but are restricted to comparing two or 
three HRV measures. 

II. METHODOLOGY  

A. Participants 

Participants were recruited from those attending the 
screening clinic as part of the Charles Sturt Diabetes 
Complications Screening Group (DiScRi), Australia [14].  
All participants provided a 20-minute recording using lead II 
ECG, from which the RR intervals were extracted. The same 
physical conditions were used for each participant, and all 
subjects were comparable for age, gender, and heart rate. 
Participants were screened to exclude those with severe heart 
disease, presence of a pacemaker, kidney disease or 
polypharmacy, including multiple anti-arrhythmic 
medication. The study was approved by the Charles Sturt 
University Human Ethics Committee and written informed 
consent was obtained from all participants. 

B. CAN Classification 

The participants, 11 with definite CAN and 71 without 
CAN, were identified using the Ewing battery [15] of tests 
[16], [17]. From the 20-minute ECG recording, a 15-minute 
segment was taken from the middle to avoid start-up, ending 
and movement artefacts in the recording. Only the RR 
intervals were retained, and no other information from the 
ECG was utilized in this study. RR intervals were normalized 
by subtracting the mean value from the RR data. A variety of 
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measures, as discussed above, were extracted. The multiscale 
Renyi entropy was calculated using -5 < α < +5, where α = 1 
is the Shannon entropy and α = 2 is the squared entropy. 
Sample Entropy was also calculated in order to provide a 
comparison. 

C. HRV Feature Visualization 

All features calculated from HRV were visualized using a 
Spider diagram. Preparation of such a diagram requires some 
care. The various measures must be normalized to allow all 
of them to fit into a comparable range. Deviation from the 
mean is not suitable, as it cannot be assumed that the 
distributions of these variables are Gaussian. Alternatively 
each measure may be related to the percentiles of its 
distribution. Some variables will extend beyond the normal 
range in a positive direction, while others will extend in a 
negative direction, so the scale must be adjusted to allow this 
to be visible. 

The measure chosen is the rank of the variable. For values 
falling above or below the range of the Normal group, the 
rank was allocated the value of 1.1 or -0.1 respectively. For 
example, patient i has a value of 6.6 for RMSSD. As the 
normal range is from 8.3 to 173, this patient has an RMSSD 
that is completely outside the normal range, and is given a 
score of -0.1. These ranks are plotted in the spider diagrams 
used here. 

III. RESULTS 

Spider diagrams were produced for the 11 patients 
diagnosed with Definite CAN. Examples are provided to 
illustrate the possible presentations of definite CAN, using 
this multi-feature HRV visualization. Figure 4 shows one of 
the subjects from the Definite group that appears to diverge 
the least from the Normal group. The thick black lines 
provide the 25

th
 and 75

th
 percentile for the Normal group. The 

subject with definite CAN is shown using the dotted line. 

 

Figure 4. Spider diagram from a person with Definite CAN, 
showing a low relative deviation from the Normal group. 

Notice that for nearly every measure used, this person 
received a score that placed them near the 25

th
 or the 75

th
 

percentile. The spider diagram includes results of steady-state 
measures such as SDNN and total power, as well as the 
composition of HRV rhythms reflecting different regulatory 

mechanisms (high and low frequency power). The same 
diagram allows comparison with nonlinear methods that 
measure the extent to which interbeat intervals are correlated 
(correlation dimension D2), and Detrended Fluctuation 
Analysis (DFA). The latter indicates the internal short-term 
and long-term correlation within the signal. Also included are 
entropy measures, which are indicators of the regularity or 
complexity of the signal.  In Figure 4, the total variance of 
the signal, as measured by SDNN or total power (TP), is low. 
LF and HF power are also low. D2 indicates that RR intervals 
are not highly correlated and this may be the reason that 
entropy measures such as SampEn and the Renyi entropies 
are near the upper limit of normal. For definite CAN, one 
would expect low HF, as CAN results in reduced 
parasympathetic contribution. This observation applies to 
other features as well, such as alpha1 (a DFA measure) and 
SD1 (Poincaré mapping), which indicate low short-term 
correlation and are associated with the parasympathetic 
component of the ANS. This type of presentation is often 
seen in post myocardial infarct patients and indicates in this 
case extensive loss of normal autonomic nervous system 
modulation. 

Another subject with Definite CAN is shown in Figure 5. 
All HRV features show a higher deviation from the Normal 
group than the previous example. 

 

Figure 5. Spider diagram from a person with Definite CAN, 
showing a high relative deviation from the Normal group. 

 

The time and frequency domain results seem to trend 
similarly to figure 4, indicating parasympathetic withdrawal. 
The interesting aspect of Figure 5 is that the negative Renyi 
features are outside the normal range but in the opposite 
direction to the positive values. Renyi entropies show 

continuity properties with respect to their scaling exponent α 
and thus in the case of Figure 5, the complexity content with 
respect to the Renyi scaling exponents differ dramatically 
compared to the patient shown in Figure 4. This may be a 
reflection of the high DFA alpha1 and alpha2 values, which 
indicates that the internal correlations of the signal are 
moving towards a Brownian noise type of pattern and 
therefore abnormal.  
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These results should be viewed in the context of current 
accepted methods for detection of CAN – in this case the 
gold standard is the Ewing battery. According to that test, 
definite CAN is indicated by any two of three heart rate 
parameters being abnormal (Valsalva, deep breathing or lying 
to standing) plus one of the two BP measures (handgrip or 
lying to standing). This leads to two important points. 

First, each of the Ewing measures has a different 
weighting in terms of its association with CAN. Second, 
Ewing tests are influenced by patient compliance. Thus a frail 
elderly person or someone with arthritis is more likely to 
have an abnormal handgrip result. It is customary to omit a 
Valsalva test if there is known respiratory or cardiac disease, 
but asymptomatic respiratory disease or seasonal asthma may 
also affect deep breathing and Valsalva results. Therefore the 
current spider diagram visualization obtained from patients in 
a passive supine position may be a more robust way of 
determining CAN than the Ewing battery. In addition this 
multi-feature representation provides a good overview of the 
different HRV features, which have different properties and 
thus can be interpreted as a combined feature set. 

IV. CONCLUSION 

In this paper we have presented a new visualization 

technique for the results of HRV. One advantage of this type 

of representation is that it alerts to the fact that it is not only 

when certain HRV features are lower than normal but also 

when they are higher than normal that pathophysiology is 

expected. The Spider diagrams indicate that there is no 

simple representation of definite CAN pathology but that 

there is a complex relationship between global steady-state 

characteristics, frequency specific rhythms of the biosignal, 

internal short and long-term correlations between RR 

intervals and the complexity of the system. 

In future work we may be able to improve the definition 

of the Normal group by considering age and identifying the 

strongest HRV features for classification. In this work we 

have shown the utility of visualizing HRV features with a 

spider diagram in clinical practice, where it is important to 

be able to make a decision based on multi-feature input in a 

timely and optimal manner.  
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