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Abstract— Heart rate variability (HRV) is recognized to carry
early diagnostic value regarding cardiac autonomic neuropathy
(CAN). A number of different HRV analysis algorithms have
been proposed for the assessment of CAN, each of them
providing partly differing information about HRV time series.
Instead of confining to a limited set of HRV features, a
multi-dimensional approach incorporating a multitude of HRV
parameters could be an optimal way of assessing the changes
in HRV related to CAN. In this paper, principal component
analysis (PCA) is used for analysing multi-dimensional HRV
data of 11 patients with definite CAN and 71 subjects without
CAN. Using the two most significant principal components,
patients with CAN were separated from subjects without CAN
with 87% accuracy.

I. INTRODUCTION

Heart rate variability (HRV) is commonly used in as-
sessing the functioning of cardiac autonomic regulation.
The autonomic nervous system (ANS) regulates heart rate
(HR) through sympathetic and parasympathetic branches.
Sympathetic activity increases HR and decreases HRV,
whereas parasympathetic activity decreases HR and increases
HRV. The low frequency (LF, ranging from 0.04-0.15 Hz)
component of HRV is influenced by both sympathetic and
parasympathetic nervous activities, whereas the high fre-
quency (HF, 0.15-0.4 Hz) component originates solely from
parasympathetic nervous activity [1].

HRV is reduced in diabetes mellitus (DM) patients, sug-
gesting dysfunction of cardiac autonomic regulation. Early
assessment of cardiac autonomic neuropathy (CAN) and
intervention are important for risk stratification and early
treatment in preventing sudden cardiac death in diabetic
patients. While HRV is recognized to carry early diagnostic
value regarding CAN, reduction of HRV has been observed
also in patients without clinical evidence of CAN [1], [2]. For
the assessment of CAN using HRV analysis, standard time
and frequency-domain methods as well as different nonlinear
methods have been proposed [3], [4], [5], [6].

It is important to understand that different HRV analysis
algorithms can provide different information about the HRV
time series. How a pathology effects characteristics of the
measured time series may differ between types of pathologies
but also between individuals, and thus, use of a limited
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set of HRV analysis algorithms is not an optimal approach
for assessing these changes. It is better to use a multi-
dimensional approach incorporating a number of different
HRV features when assessing the changes in ANS with
respect to changes associated with pathology such as CAN.

In this paper, principal component analysis (PCA) is
applied for multi-dimensional HRV data of patients with
definite CAN and subjects without CAN.

II. METHODS

A. Subjects and HRV data

The study population consisted of 11 patients with definite
CAN (CAN group) and 71 subjects without CAN (Normal
group), recruited at the health screening clinic at Charles
Sturt University, Australia [7]. CAN was identified using the
Ewing battery of tests [8]. According to this test, definite
CAN is indicated by any two of three heart rate parameters
being abnormal (Valsalva, deep breathing or lying to stand-
ing) plus one of the two blood pressure measures (handgrip
or lying to standing). Standard exclusion criteria were applied
to exclude those with severe heart disease, kidney disease or
polypharmacy. All subjects were comparable for age, gender
and heart rate.

A 20-minute resting electrocardiogram (ECG) was
recorded from all subjects. The ECG was recorded using
lead II configuration at 400 Hz sampling rate (Maclab ADIn-
struments, Australia). For analysis, a 15-minute segment was
taken from the middle of the record of 20-minute to avoid
movement artifacts at the beginning and end of the recording.
The RR interval time series were extracted from the ECG
using the QRS detection algorithm of Kubios HRV software
[9]. Frequencies below the LF band (below 0.04 Hz) were
filtered out from the RR time series by using smoothness
priors detrending [10]. Furthermore, the RR interval time
series were interpolated using 4 Hz cubic spline interpolation
to have evenly sampled data for spectral analysis.

The study was approved by the Charles Sturt University
Human Ethics Committee and written informed consent was
obtained from all participants.

B. HRV analysis

Several different time-domain, frequency-domain and non-
linear HRV parameters were computed following the guide-
lines given in [1]. The parameters selected for this study are
briefly described below.

Most of the time-domain parameters are computed straight
from the RR time series. These include the mean RR
interval, standard deviation of normal-to-normal RR intervals
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(SDNN), root mean square of successive RR interval differ-
ences (RMSSD) and percentage of successive RR intervals
that differ by more than 50 ms (pNN50). In addition,
two parameters computed from the RR interval histogram
were considered. The HRV triangular index (HRVtri) is the
integral of the RR interval histogram (i.e. the number of
RR intervals within the time series) divided by the height
of the histogram (i.e. number of RR intervals at modal bin).
The triangular interpolation of RR interval histogram (TINN)
is the baseline baseline width of a triangle fitted to the
histogram.

Frequency-domain parameters, such as low frequency
(LF), high frequency (HF) and total spectral power, were
extracted from power spectral density estimates of the RR
interval time series. The LF (ranging from 0.04–0.15 Hz)
and HF (ranging from 0.15–0.5 Hz) component powers were
computed both in absolute units (ms2) and in normalized
units (n.u.). Normalized powers were obtained by dividing
the absolute powers with total spectral power and multiplying
by 100 to give values as a percentage. In addition, the LF/HF
power ratio was also computed.

Several nonlinear methods were also applied on the RR
time series data. The Poincaré plot is a simple scatter plot and
provides indexes for short term variability (SD1) and long
term variability (SD2) which are both nonlinearly connected
to time-domain parameters [11]. Sample entropy (SampEn)
[12] and correlation dimension (D2) [15] are both measures
of signal complexity. Detrended fluctuation analysis (DFA)
measures correlations of short term (α1, within range 4-
16 beats) and long term (α2, within range 16-64 beats)
fluctuations within the RR time series [13]. Recurrence plot
analysis (RPA) is an approach to measure recurring structures
within the time series, where the number of recurrences
is quantified by parameters such as recurrence rate (REC),
determinism (DET) and mean diagonal line length (Lmean)
[14]. A multi-scale Renyi entropy H(α) was computed
according to

Hα(x) =
1

1− α
log2

(

N
∑

i=1

p(xi)
α

)

(1)

for orders α = −5 . . . 5. Above, p is the probability density
function and p(xi) is the probability for x = xi. The
probabilities were estimated using the methods outlined in
[16].

C. Principal component analysis

Principal component analysis (PCA) is a multivariate
statistical procedure where the random observations are
transformed into a smaller set of uncorrelated variables called
principal components (PCs) [17]. In other words, the original
data is presented as a weighted sum of orthogonal basis
vectors, where the basis vectors are the eigenvectors of data
covariance or correlation matrix and the weights are the PCs.
Typical applications of PCA include data reduction, feature
extraction and visualization of multidimensional data.

In this paper, PCA is used for analyzing correlations
between 32 HRV parameters and for visualizing the mul-
tidimensional HRV data. Let us denote the HRV data (M
parameters for N subjects) in matrix form as
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where z
(j)
i is the value of the ith HRV parameter for the

jth subject. Before PCA, HRV parameters were normalized
such that the median of each parameter over the N subjects
was 0 and width of the 50% confidence interval equal to 1.

The data correlation matrix R was then estimated as

R =
1

N
ZTZ (3)

and eigenvectors of R solved from eigendecomposition.
When K most significant eigenvectors (corresponding to
largest eigenvalues) are taken as basis vectors, i.e. H =
(v1, v2, . . . , vK) ∈ R

M×K , the first K PCs can be solved
using least squares estimation as

θ̂PC = HTZT (4)

where θ̂PC
∈ R

K×N such that the kth row includes the kth
PCs (weights related to kth eigenvector) for the N subjects.

III. RESULTS

Most of the HRV parameters showed a clear difference
between the Normal group (subjects without CAN) and
CAN group (subjects diagnosed with definite CAN using
Ewing battery of tests) as can be seen in Fig. 1. HRV
was overall reduced in CAN shown by decreased SDNN,
RMSSD, pNN50, HRVtri, TINN, LF and HF power as well
as total spectral power, and SD1 and SD2 in the CAN
group. No difference between the groups was observed in
normalized LF and HF powers or in LF/HF ratio. Correlation
dimension D2 was lower for the CAN group and Renyi
entropy values in the CAN group were lower for negative
and higher for positive orders.

The HRV data shown in Fig. 1 was then written in matrix
form according to equation (2) and the correlation matrix
was estimated using (3). Furthermore, the most significant
eigenvectors (corresponding to largest eigenvalues) were
computed using eigendecomposition. The correlation matrix
and the two most significant eigenvectors are illustrated in
Fig. 2. Positive correlations are observed between most of
the time-domain parameters and absolute power values. In
addition, positive correlations are observed within negative
scales of Renyi entropy as well as within positive scales.

The two eigenvectors illustrated in Fig. 2 were able to
represent ∼75% of the variance in the HRV data, whereas
the first six eigenvectors were able to represent as much
as ∼ 95% of the variance. In order to evaluate how these
eigenvectors fit into individual data, the first six PCs were
computed for all subjects using (4) and the values of these
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Fig. 1. Box plots of HRV parameters for Normal and CAN groups. On each box, the central mark is the median, the edges of the box are the 25th and
75th percentiles, and the whiskers extend to the most extreme parameter values excluding outliers (plotted as squares). Significant differences between the
groups were tested using the Wilcoxon rank sum test (*p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001).
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Fig. 2. Correlation matrix of HRV data (top) and the two most significant
eigenvectors (bottom).

PCs are shown in Fig. 3. The first two PCs are both smaller
for CAN group when compared to Normal group, which
indicates that these two PCs can potentially separate the two
groups.

Representations of the HRV data using the first two PCs
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Fig. 3. First six PCs for Normal and CAN groups. The bars indicate
Mean±SD intervals and crosses (×) indicate individual values.

(corresponding to two most significant eigenvectors) are
shown in Fig. 4. Fig. 4A shows the results when PCA was
applied to all HRV parameters and Fig 4B the results when
only those HRV parameters showing a significant difference
between the groups in Fig. 1 were used for PCA.

IV. DISCUSSION

Principal component analysis of a number of HRV pa-
rameters, each providing at least partly differing information
about the RR time series, was presented. Using data from 11
patients with definite CAN and 71 subjects without CAN the
effects of CAN on different HRV parameters was evaluated.
Most of the HRV parameters were significantly different
between the groups (CAN vs. Normal). HRV was overall
reduced in CAN patients indicated by lowered time-domain
HRV parameters and spectral powers. In addition, Renyi
entropy and the correlation dimension were clearly able to
capture the HRV changes related to CAN.
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Fig. 4. Representation of HRV data using first two PCs, when A) all
HRV parameters are included in the PCA and B) when only those HRV
parameters, which showed significant difference between the groups, are
included in the PCA.

The correlation matrix of the multi-dimensional HRV data
revealed that there are positive correlations between most
of the time-domain variables and absolute spectral powers.
This was expected because all these variables measure the
strength of the variability in one way or another. Weak pos-
itive (negative) correlations were also observed between the
above-mentioned variability measures and negative (positive)
orders of Renyi entropy. The weak correlation indicates that
CAN is not represented only as lowered variability, but it
also effects RR interval time series characteristics in a way
detectable by Renyi entropy.

Due to the fact that many of the HRV parameters were cor-
related, the multi-dimensional data were possible to present
using only the two most significant PCs (which covered
∼75% of the variance of HRV data). By adopting simple
linear discrimination on these PCs a good separation between
CAN and Normal groups is obtained (see Figs. 4A and 4B).
In Fig. 4A (Fig. 4B), 8/11 (7/11) CAN and 11/71 (7/71)
Normal subjects are situated below the visually defined dis-

criminant line, this corresponds to 83% (87%) discrimination
accuracy.

In conclusion, dimensionality of multi-dimensional HRV
data can be reduced using PCA. The first few PCs and the
corresponding eigenvectors are able to model most of the
information in the original multi-dimensional data, and thus,
these PCs can be used to visualize the original data in lower
dimensions, e.g. in 2D.
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