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Abstract— Complexity measures from Multiscale Entropy
(MSE) analysis of cardiovascular variability may provide
potential biomarkers of pathological mental states such as
major depression. To this extent, in this study we investigate
whether complexity of Heart Rate Variability (HRV) is also
affected in mental disorders such as bipolar disorders (BD).
As part of the European project PSYCHE, eight BD patients
experiencing multiple pathological mood states among depres-
sion, hypomania, and euthymia (i.e., good affective balance)
underwent long-term night recordings through a comfortable
sensing t-shirt with integrated fabric electrodes and sensors.
Standard radius, i.e., 20% of the HRV standard deviation,
and a maximal-radius choice for the sample entropy estimation
were compared along with a further multiscale Renyi Entropy
analysis. We found that, despite the inter-subject variability, the
maximal-radius MSE analysis is able to discern the considered
pathological mental states of BD. As the current clinical practice
in diagnosing BD is only based on verbal interviews and scores
from specific questionnaires, these findings provide evidence on
the possibility of using heartbeat complexity as the basis of
novel clinical biomarkers of mental disorders.

I. INTRODUCTION

Bipolar Disorder (BD) is one of the most common and
dangerous chronic psychiatric condition during which pa-
tients can experience mood swings among depression, mania
or hypomania, and mixed states comprised of both depressive
and hypomaniac episodes [1]. Hypomania refers to a moder-
ate form of mania, i.e. pathologic euphoria or irritability or
excessive energy, whereas depression is related to sadness
and hopelessness (including suicidal ideation). In addition,
BD mood states are always characterized by comorbidity
phenomena, i.e., simultaneous presence of symptoms which
are shared with other psychiatric disorders. These patholog-
ical mood states alternate along the time, may be including
periods of good affective balance called euthymia.

Clinical problems of BD are mainly related to its diagno-
sis. Current clinical practice, in fact, takes only into account
interviews and scores from psychological questionnaires,
physician own expertise in addition to patients’ description of
symptoms. Then, according to the Diagnostic and Statistical
Manual of Mental Disorders (DSM) version IV-TR [2], the
diagnosis of BD relies on the number of symptoms and clin-
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ical scores, hence likely leading to subjective interpretations,
inconsistencies, and misdiagnoses [1], [3].

Recently, several studies proposed the use of Autonomic
Nervous System (ANS) dynamics for the assessment of
pathological mental states such as major depression [4]—
[8], also highlighting complexity and nonlinear measures
derived from the analysis of cardiovascular variability as
an important element to distinguish psychophysiological and
pathological states [4]-[18]. To this extent, this study aims at
investigating whether complexity analysis of cardiovascular
variability can provide effective biomarkers also in charac-
terizing different pathological mental states of BD.

In particular, we have been inspired by several works
relating MultiScale Entropy (MSE) measures [19] to depres-
sion [4]-[8], [20], [21]. Accordingly, we hypothesize that a
multiscale complexity analysis of RR interval series gathered
from patients with BD can provide information about the
clinical mood state. We investigated whether this analysis
is able to overcome the inter-subject variability while dis-
tinguishing among three different pathological mental states,
i.e. depression, hypomania, and euthymia. Concerning the
methodology, in addition to MSE analysis, further complex-
ity measures derived from the Renyi entropy measures are
taken into account: the Quadratic Sample Entropy (QSE)
measure, which is an alternative approach for determining the
complexity of a series of RR intervals and can be interpreted
as a measure of gaussianity [22]. The Renyi entropy analysis
here is also applied in a multiscale fashion, as in [23].

In estimating both MSE and multiscale QSE (mQSE),
the proper selection of one of the most sensible parameter
of a multiscale complexity analysis, i.e., the radius of the
sample entropy, is carefully taken into account by comparing
a standard (i.e., 20% of the HRV standard deviation [8],
[19]) and a maximal-radius choice [24]-[27]. Data used in
this study come from long-term night monitoring acquisi-
tions performed using ad-hoc wearable monitoring systems
developed in the framework of the European project PSY-
CHE (Personalized monitoring SYstems for Care in mental
HEalth), whose details are reported in [13], [14].

II. MATERIAL AND METHODS
A. Experimental Protocol

Extensive details on the recruitment of eligible subjects,
experimental protocol, and data acquisition are reported
in [13], [14]. Briefly, we analyzed 16 long-term night
recordings of HRV series gathered from 8 bipolar patients
through a personalized wearable monitoring systems, which
was developed in the framework of the European project
PSYCHE (Personalized monitoring SYstems for Care in
mental HEalth) [13], [14], [28]. The protocol planned a study
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entry visit when the patient was experiencing a depressive,
hypomaniac, or mixed phase. Patients were studied with an
average frequency of 2-3 times a month and were recruited
at the University Clinic of Strasbourg, France. All clinical
states were evaluated by clinicians according to DSM-IV-TR
criteria [2].

Six recordings were associated to the label ’depression’,
5 to the label "hypomania’, and 5 to the label ’euthymia’.
For each patient, data analysis was performed on the longest
artifact-free recording of each acquisition. Such a series
lasted for no more than 4 hours and 24 minutes. The
PSYCHE wearable system was given to the patients in the
afternoon and taken back the morning after.

B. Multiscale entropy (MSE)

MSE has been widely recognized as a powerful method
to quantify the nonlinear information of a time series
over multiple time scales [19] through sample entropy
(SampEn) [29] algorithms. The detailed theory behind the
MSE methodology can be found in [19]. Briefly, MSE is
based on the calculation of the SampEn over several time
series, which are constructed from the original discrete time
series by averaging the data points within non-overlapping
windows of increasing length, 7. Formally, given a time
series {xy,...,X;,...,xy} and a scale factor 7, each element

of a course-grained series {ym} is calculated as:
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with 1 < j < N/t. For each of the series y(-ﬂ, SampEn
[29] estimation starts with the calculation of the dis-
tance between two vectors x; and x; on the phase space
x(1),x(2),...,x(N—m+1), which is defined in R™, where
m < N is a positive integer associated to the embedding di-
mension of the series. Then, all the distances within a radius
r are counted and normalized by the quantity N —m+ 1. This
procedure is performed twice considering the chosen value
of m and m+1 [29].

C. Quadratic Sample Entropy

Quadratic Sample Entropy (OSE) [22] is a SampEn related
measure that comes from the definition of the Renyi entropy.
Specifically, the quantity E[f(X)] is the starting point to
compute Renyi Entropy R, of order g defined as:

1

Rq(X) = 1—¢

log(E[f(X)7™']) 2)

when g = 1, the Renyi Entropy corresponds to Shannon
Entropy, while if ¢ =2, Ry(X) is called quadratic Renyi
entropy rate. Then, it is possible to define the differential
Renyi entropy rate, Dy, as the difference between the Renyi
Entropy of the density of order m+ 1 and of order m:

Dym = Ry(Xm+1) — Ry(Xin) 3

where m corresponds to the embedding dimension. Of note,
D, for g=2 corresponds to the SampEn [22]. Finally, the
QOSE is defined as:

OSE = Dy +1og(2r)|y=2 = SampEn+1og(2r)  (4)

In this study, QSE analysis is performed in a multiscale fash-
ion using appropriate r-values as described in the following
paragraph.

D. Choice of Standard and Maximal Radius Value

According to the MSE and QSE methodology, two pa-
rameters are mainly involved in their estimation process: the
embedding dimension m of the series, and r, a positive real
number representing the margin of tolerance, i.e., the radius.
Previous studies suggest a fixed straightforward choice of the
parameters as m =2, and r =0.15 o where o is the standard
deviation of the series [8], [19]. Nevertheless, the inter-
subject variability can easily lead to non-effective results
whether the parameters involved in the analysis are not
objectively adaptive and personalized. The variability of the
series, in fact, can be function of very slow trends (changes
in the mean RR) that likely are not related to the complexity
modulation by pathological mental state. This concept has
been recently pointed out in [24], [25], [27]. Therefore, in
order to study the influence of the r-value on the MSE
and QSE estimation, and to improve the objectivity of the
experimental results, in this study we tested the following
two r-choosing methodologies:

r-Method I, which consists in the previous mentioned
traditional choice for physiological data of r = 0.15 o [8],
[19] evaluated for each acquisition of each patient.

r-Method II, which considers different » values for each
acquisition of each subject so as to maximize the calculation
of the Approximate Entropy (ApEn) [30] in the range
0.01 <r < 1.2, as suggested in [24]-[27]. This method
considers that the highest value ApEn(ry) is interpolated
with the preceding and the following values, ApEn(r_) and
ApEn(riy1) , with a parabola. The position of the vertex of
the parabola gives the maximal radius 7;,4y-

III. RESULTS

We apply both r-Method I and r-Method II to the MSE and
multiscale QSE (mQSE) estimation to characterize complex-
ity changes in three BD psycho-pathological states. On all
the analysis, Kruskal-Wallis non-parametric tests were used
to test the null hypothesis of having no statistical difference
in the complexity indices among the patients acquisition
groups (euthymic, depressed, hypomanic). Mann-Whitney
non parametric U-tests were used to compare two samples
belonging to two different groups on the post-hoc statistical
analysis. The use of such non-parametric tests is justified by
having non-Gaussian distribution of the samples (p < 0.05
given by the Shapiro-Wilk test having the null hypothesis
of Gaussian distributed samples). All results are expressed
as median and its respective absolute deviation (i.e. for a
feature X, X = Median(X) = MAD(X) where MAD(X) =
Median(|X —Median(X)|)).

MSE and mQSE, estimating up to the twentieth scale
factor, were calculated on the longest segment of consecutive
artifact-free samples of each acquisition of each patient. The
m value is fixed for all cases to the standard value m = 2.

r-Method-1: On the MSE and mQSE calculation, the
Kruskal-Wallis non-parametric test showed no statistical dif-
ference among the three pathological groups (p > 0.05) over
all the scale factors (see Figure 1).
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Fig. 1. Multiscale QSE analysis with r =0.150(RR) of heart rate dynamics
in nocturnal period among mental states associated to pathological moods
such as depression, hypomania, and euthymia. Values are expressed as
Median + MAD.

r-Method-II: For this method, we found that the maxi-
mum value of entropy was always within the range from 0
to 0.30. Concerning the mQSE analysis, the Kruskal-Wallis
non-parametric test showed no statistical difference among
the three pathological mental states (p > 0.05) over all the
scales. Concerning the MSE analysis, the Kruskal-Wallis
test revealed statistical differences between the groups at
all scales. In particular, when scale is equal to 1 and for
scale values comprised between 7 and 19, the null hypothesis
of having no difference was rejected with p < 0.01. At
scales 2, 3, 4 and 6 the null hypothesis was rejected with
p < 0.05, while at the remaining scale 5, the obtained p-
value is less than 0.06. Moreover, the post-hoc analysis per-
formed using the Bonferroni correction showed significant
differences between the hypomanic and euthymic states with
(p < 0.05) at scales 1, 2 and from 5 to 20. At scales 1,9,10
hypomanic group data was also different from depressed.
The euthymic state was always associated to the highest
complexity, followed by the depressive and hypomanic states,
respectively.
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Fig. 2. Multiscale QSE analysis of heart rate dynamics in nocturnal period
among mental states associated to pathological moods such as depression,
hypomania, and euthymia using the r-Method-II. Values are expressed as
Median = MAD.
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Fig. 3. MSE of heart rate dynamics in nocturnal period with r-method-II.
Values are expressed as Median +=MAD.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a study on the com-
plexity and multiscale behavior of heartbeat dynamics in
bipolar patients through MSE and mQSE analysis of long
term RR series. The choice of multiscale analysis is justified
by the fact that MSE has been proven a powerful tool
in translational psychiatry, discerning patients with major
depressive syndrome from healthy subjects [8]. In particular,
significant lower complexity has been found in patients with
depression as compared to healthy subjects.

We considered both the standard r — Method — I (with
r defined as 20% of the signal standard deviation) and a
modified r — Method — 11, which searches for the maximum
ApEn values in a parabola interpolating values 0.01 <r <1.2
[24]1-[27]. We applied the methods to three pathological men-
tal states: depression, hypomania, and euthymia associated
to BD. We found that significantly higher complexity at
all scales is associated to the euthymic state (the mental
state of good affective balance), that the depression state
shows significantly lower complexity when compared to
the euthymic state, and that hypomanic states show lowest
complexity values (p < 0.01) than both other two states.
Of note, the differences in complexity found among the
three pathological mood states are not biased by the age
of the patients enrolled in the study. As a matter of fact,
a probability value of 0.435 (from the Kruskal-Wallis non-
parametric test) is associated to the null hypothesis of having
no significant difference in age among the pathological mood
states.

Our results confirm a significant decrease of complexity
patterns in pathological mood states [7], [8], [13], opening
to the possibility for extending the current knowledge on
objective psycho-physiological markers. Moreover, it is well-
known in the current literature that cardiovascular dynamics
are strongly affected by central processing [8], [13], [14],
[31].

Our results advocate the use of a more objective method
for the SampEn estimation over the scale factors, which
involves a proper choice of the r value, which is more ap-
propriate when dealing with long term recordings on patients
with different mental states [24], [25], [27]. Because in the
current clinical practice the diagnosis of mental disorders
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does not rely on objective psycho-physiological markers,
in agreement with the outcomes of this study, it could
be possible to exploit HRV complexity indices to give a
viable support to the clinical decision, even when verbal
reviews are not possible. BD, in fact, is a chronic severe
disease [32] which strongly affects the patients’ quality of
life, even during euthymic states [33], and to date there
are no objective biological/physiological markers currently
available to monitoring the response to treatment.

This study has been performed within the frame of the
PSYCHE project [13], [14], [28], where a multidisciplinary
and multi-parametric analysis of BD through the processing
of several behavioral, biochemical, and electrophysiological
variables has been carried out. Future work will focus on
the estimation of a simple index representing the complex-
ity modulation among the three mood states and all scale
factors as well as extending the MSE analysis to long term
acquisitions during the day, involving also healthy subjects.
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