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Abstract—Central autonomic control on the cardiovascular 

system has been widely investigated in the last decades. More 

recently, with the advent of brain imaging techniques, 

considerable effort is being spent on defining the role of specific 

brain areas, and their dynamic network, acting on autonomic 

efferents. A way to assess autonomic modulation is offered by 

carotid stimulation. In this work, we propose a methodology to 

investigate autonomic control in carotid stimulation 

experiments using heartbeat series in combination with fMRI 

imaging. We modeled cardiovascular signals using the point 

process model, and processed fMRI data in order to estimate 

independent components of correlated information. Using 

cross-correlation and surrogate analysis, we assessed the 

responsiveness of subjects to neck suction stimuli and identified 

stimulus-related fMRI independent components. 

I. INTRODUCTION 

The autonomic nervous system (ANS) is the part of 
peripheral nervous system responsible for the control of 
visceral functions, e.g. heart beating, breathing, swallowing. 
Focusing on cardiovascular control, several studies have 
shown specific functions of the brainstem and other areas [1]. 
Functional magnetic resonance imaging (fMRI) is an 
established technique, and it is claimed to be the best tool for 
gaining insights into brain function and formulating 
interesting and eventually testable hypotheses. The success in 
testing such hypotheses critically depends on a wide range of 
factors, e.g. the specific magnetic resonance technology, the 
experimental protocols, the statistical analysis tools, and the 
modeling approach chosen for each undertaken study [2]. 
Combining fMRI with autonomic monitoring has permitted 
new insight into brain-heart interaction and the integration of 
autonomic cardiovascular and cognitive processes [3],[1]. A 
way to perform autonomic perturbation, in order to 
investigate the cardiovascular control focusing on the 
baroreflex mechanism, is the non-invasive carotid stimulation 
technique by neck suction [4], that has proven to be an 
efficacious method to alter heart beat dynamics (HBD) [5] 
and heart rate variability (HRV) as quantitative markers of 
cardiovascular regulation by the ANS. 

 
*Corresponding Author.  
1M. Mancini is with the Department of Engineering, Università degli 

Studi di Roma Tre, Rome, Italy (e-mail: matteo.mancini@uniroma3.it). 
2G. Calcagnini, E. Mattei and F. Censi are with the Department of 

Technology and Health, Italian National Institute of Health, Rome, Italy. 
3M. Bozzali is with the Neuroimaging Laboratory of Santa Lucia 

Foundation, Rome, Italy 
4R. Barbieri is with the Dept of Anesthesia, Critical Care and Pain 

Medicine, Harvard Medical School, Massachusetts General Hospital, 

Boston, MA, USA, and also with the Massachusetts Institute of 

Technology, Cambridge, MA, USA. 
 

The combination of neck suction, HBD and fMRI 
analysis requires a tailored modeling of the time series 
involved, since the original data have specific and distinctive 
time courses and representations.      

In this paper, we propose a signal modeling framework to 
investigate the baroreflex central processing and responses 
elicide at higher cortical centers, based on both a point 
process model of heartbeat dynamics and a data-driven 
approach to fMRI analysis. Care was paid to model the 
different dynamics of the various signals involved, from few 
milliseconds in the case of the ECG signal to several seconds 
in the case of the Blood Oxygenation Level Dependent 
(BOLD) signal.  

Since standard time varying techniques do not really 
overcome the stationarity constraint and do not give 
instantaneous measures of HBD using a statistical 
physiologically-based model framework, Barbieri et al. 
proposed a statistical model of the human heart beat based on 
a inhomogeneous history-dependent probability density that 
may be used to compute instantaneous estimates of heart rate 
and heart rate variability from electrocardiogram recordings 
[6]. Maximum local likelihood and adaptive filtering methods 
are used to estimate the model parameters. The point process 
statistical model is defined by an inverse Gaussian density 
function. It has been shown that the inverse Gaussian 
framework gives an excellent model to describe interval data. 

Furthermore, in order to avoid any a priori hypothesis and 
to perform the analysis on the entire brain, we chose a data-
oriented strategy to find features directly from the data. A 
common method used in cognitive and clinical studies in the 
last years is given by the independent component analysis 
(ICA), which has proven to be a powerful tool to identify 
task-related brain regions [7]. However, no attempt has been 
made before to use this technique so as to analyze autonomic 
data. This is due to the issue of describing a stimulation 
signal as in the motor or cognitive task-related protocols. 
Since carotid stimulation offer a suitable way to thoroughly 
describe cardiovagal stimuli, ICA becomes a viable tool for 
studying ANS. 

In order to assess the relationship between independent 
components of BOLD signals and neck suction stimuli, we 
performed cross-correlation analysis and then evaluated its 
significance. 

II. METHODS 

 A. Data Acquisition 

All data were collected at the Neuroimaging Laboratory 
of Santa Lucia Foundation in Rome (Italy). Participants 
consisted of fourteen healthy right-handed subjects, all men. 
The protocol was approved by the local ethics committee. 
During a two sessions fMRI scan, each subject was 
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stimulated with a MRI compliant neck suction device, 
consisted of a two chambers collar and a vacuum source [8], 
[9]. In order to set the pressure, a feedback system was built 
using the pressure signal of the pump and a reference signal 
generated by a National Instruments acquisition card: in this 
way the aspiration level of the source was controlled. The 
vacuum source and the related controlling unit were placed 
in the MRI control room. A 5-m length silicon tube 
connected the pump with the neck collar, passing through a 
waveguide of the Faraday cage. Furthermore, the actual 
pressure of the collar was continuously recorded by a 
pressure transducer. Since two cuffs were used, the pressure 
line was split in two parallel arms, and the pressures were 
monitored and recorded independently in both cuffs in order 
to avoid asymmetric pressure losses. During each session, 
two different pressures were applied as efficacious and non-
efficacious stimuli, the lowest pressure inducing autonomic 
response (-60 mmHg), and the highest one not inducing 
response (-10 mmHg). These values were preliminary 
defined in another study [10]. In the first session, an event-
related design was used: 50 efficacious and 30 non-
efficacious stimuli were randomly arranged, where each 
stimulus had a duration of 8 seconds. The subjects were 
instructed to just lie in the scanner with their eyes closed. In 
the second session, the stimulation followed a block design: 
there were eight 60-seconds blocks of efficacious stimuli 
interchanged with eight ones of non-efficacious stimuli, and 
each block included five stimuli. Each single stimulus had a 
duration of eight seconds. In this session, the subjects had to 
perform a two-part spatial attention task: in the first part, 
they were required to respond by key-press when presented 
with items showing a symmetry and not to press in case of 
non-symmetry; in the second part, they had to respond by 
key-press to items presented in yellow and not to respond to 
items presented in other colors. Outside the scanner, the 
autonomic tone was proved not to be altered by this task. [9] 
During each scan, the ECG signal was recorded using a 
BIOPAC MRI compliant system, with a sampling rate of 
200 Hz. The functional brain imaging was carried out with a 
head-only 3 Tesla MRI Scanner (Siemens Magnetom 
Allegra), equipped with a circularly polarized transmit-
receive coil. Functional images were collected using echo-
planar T2* sequence with blood oxygenation level-
dependent contrast. Each acquiring volume consisted of 32 
axial slices covering the whole brain, with a repetition time 
of 2.08 s, for a total duration of 20 minutes for each session. 
In both sessions, the first four volumes were discharged to 
allow for T1 equilibration effects. The fMRI data were then 
preprocessed using the software SPM5 (Statistical 
Parametrical Mapping, http://www.fil.ion.ucl.ac.uk), in order 
to realign the images, to normalize them and finally to 
smooth and filter them. 

 B. Point-Process Model of Heart Beat Dynamics 

The R events series were first obtained from the ECG 

signal using a threshold algorithm developed in MATLAB. 

Then, each series was visually searched and manually 

corrected for artifacts and detection errors. The resulting 

data were processed with an algorithm developed by 

Barbieri et al. in order to automatically detect and correct 

further erroneous and ectopic heartbeats [11]. The final 

heartbeat intervals were modelled as a history-dependent 

inverse Gaussian process using the point-process algorithms 

developed in MATLAB by Barbieri et al. as well [5]. No 

hypothesis on the stationarity of the signal was made, so the 

parameters retrieved from the software were time-varying. 

As a result of using a point-process approach, the agreement 

between heartbeat series and the model could be assessed 

using the Kolmogorov-Smirnov (KS) test and the correlation 

between the RR interval values: in this way the best order 

for the model was determined. Furthermore, we assessed the 

response of heart rate to the neck suction stimuli performing 

cross-correlation between the point-process time course and 

the pressure signal generated by the neck suction device. 

 C. fMRI Independent Component Analysis 

The independent component analysis of the fMRI data 

was performed with GIFT 2.0a (Group ICA of fMRI 

Toolbox, http://mialab.mrn.org) [7]. Since the study 

included also an event-related design with stimuli randomly 

given to each subject, we performed single-subject instead of 

group analysis. For each subject and each session, the 

number of independent components was estimated using 

minimum description length criterion. Then the independent 

components were calculated using the Infomax algorithm. 

For each component, the correlation with the pressure 

stimulation signal was computed, and then the maximum 

value with the related lag was used. Due to the higher 

sampling frequency of the pressure signal, the components 

were low-pass filtered and resampled at the same frequency 

of the MRI scanner. 

 D. Surrogate Data Analysis 

In order to estimate the significance of the correlation for 
the point-process model and the independent components 
with the pressure stimulation signal, we considered surrogate 
data analysis as a bootstrap method [12]: the correlation 
between time-shuffled versions of target data, i.e. 
independent components and point process signal, and the 
reference signal, i.e. the pressure stimulus, was calculated. In 
this way, we canceled almost any kind of information 
contained in the signal, and we could assess the significance 
of correlation by checking the difference between the original 
correlation and the surrogate ones, without making any 
assumption on the distribution. The results of surrogate data 
analysis were evaluated in two ways. The first measure of 
significance was calculated as: 
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where Qoriginal is the maximum of cross-correlation for the 
original data set and Q

*
surrogate and σsurrogate are the mean and 

the standard deviation, respectively, of the maximum of 
cross-correlation for the surrogate data set. The second way 
to assess the significance is the α-level defined as 
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where ni is the number of surrogate signals with a higher 
correlation than the original one, and ns is the total number of 
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surrogate signals. In order to obtain reliable estimates, we 
chose the number of shuffled signals computed equal to 
10000 [13]. 

III. RESULTS 

 A. HBD model goodness-of-fit 

For the point-process model, we initially chose the 
standard parameters for the framework (time resolution: 5 
ms, regressive order: 9, forgetting factor: 0.98) and then 
assessed the model goodness-of-fit using the KS test and the 
autocorrelation. Fig. 1 illustrates these results for a 
representative subject: the KS plots showed a good 
agreement between the heartbeat interval time series and the 
model for all the subjects, and the autocorrelation function 
was indistinguishable from zero. Variations of the model 
order showed no significant improvement in the model 
goodness-of-fit, while increasing the model order caused 
worse KS plots, so the standard parameters were considered 
appropriate for the data. 

 
 

Figure 1 -  Point process estimate of heart beat dynamics of a representative 

subject. (a) Point process model time course (continuous blue line) 
compared with the R-R interval series (red dots); (b) KS plot and (c) 

autocorrelation of the estimated R-R interval series. 

 B. HBD response 

In order to assess the response of heart rate to the neck 

suction stimuli, we performed cross-correlation between the 

point-process time course and the pressure signal generated 

by the neck suction device. The results are shown in table 1. 

Although every subject shows a high correlation value, not 

all show significance: surrogate data analysis showed that 

for the block design session 6 subjects out of 14 showed an 

α-level lower than 0.05 and a S value equal at least to 3, 

used as a threshold in another study [12], while for the 

event-related session 5 subjects showed values in that range. 
 

 C. Stimulation-related fMRI Independent Components 

The results of the cross-correlation between the 

independent components and the pressure signal are 

summarized in table 2: for each subject we report the 

correlation and the relative lag of the most correlated 

component, together with the results of surrogate data 

analysis. The block design session results show that for each 

subject there is at least one component with a moderate 

correlation value. Regarding surrogate data analysis, every 

subject shows a very low α-level but only 7 subjects exhibit 

a S value equal at least to 3, regardless of the significance of 

the correlation between HBD and stimulation. The event-

related design session results present a similar situation, with 

the exception of three subjects showing correlated 

components with a very high lag value. 

 

IV. DISCUSSIONS AND CONCLUSION 

We have presented a modeling framework for analyzing 

fMRI and cardiovascular data during autonomic nervous 

system perturbation in normal subjects. Because the novelty 

of the experiments and the peculiarity of the neck suction 

stimulation prevented assumptions related to specific 

temporal or regional pattern of activation in the brain, the 

main tool of this framework was identified in the data-driven 

approach given by ICA. The cross-correlation between 

stimuli and independent components has led to identify 

stimulus-related components. 

Moreover, we were able to apply the point-process model 

used in defining heartbeat dynamics to represent further 

induced responses. This is the first attempt to model the neck 

suction induced heart beat dynamics suitable for a joint 

analysis with fMRI data. Such modeling provides HBD time 

series suitable to be used for cross-correlation and 

independent component analysis.  By using cross-correlation 

between point process HBD and stimuli, it has also been 

possible to classify subjects in terms of responsiveness to 

stimuli. In most of the subjects, indeed, a component 

correlated with the neck suction signal was found. Surrogate 

data analysis allowed to evaluate the statistical significance 

of the observed correlation. 

The next step could be isolating the brain regions involved 

and then studying the activation timing to complete the 

tracking of the baroceptors response. Finally, relevant inter-

individual differences were observed. Such differences need 

further analysis and eventually group analysis. 
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TABLE I.  RESULTS OF THE CORRELATION BETWEEN POINT-PROCESS TIME COURSE AND PRESSURE STIMULATION SIGNAL 

Subject 
Block design session Event-related design session 

Correlation Lag α S Correlation Lag α S 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 

-0.666 

-0.680 
-0.657 

-0.672 

-0.673 
-0.680 

-0.680 

-0.683 
-0.695 

-0.659 

-0.698 
-0.702 

-0.697 

-0.677 

 0 

 0 
 2 

 0 

-1 
 4 

 0 

 0 
-1 

-1 

 0 
 0 

 0 

-1 

0.004 

0.170 
0.400 

0.084 

0.828 
0.084 

0.000 

0.001 
0.229 

0.543 

0.000 
0.000 

0.000 

0.046 

2.977 

0.944 
0.177 

1.462 

0.954 
1.389 

7.633 

3.368 
0.728 

0.130 

7.651 
4.547 

8.552 

1.734 

-0.711 

-0.689 
-0.667 

-0.713 

-0.679 
-0.708 

-0.635 

-0.696 
-0.732 

-0.693 

-0.728 
-0.721 

-0.726 

-0.713 

 1 

 5 
 5 

 0 

 3 
 0 

 1 

 0 
 0 

 1 

 0 
 0 

-1 

 1 

0.002 

0.795 
0.023 

0.031 

0.945 
0.998 

0.000 

0.071 
0.006 

0.774 

0.000 
0.003 

0.000 

0.019 

3.276 

0.839 
2.135 

1.988 

1.500 
2.860 

7.827 

1.522 
2.725 

0.770 

4.355 
3.243 

8.755 

2.333 

 

TABLE II.  RESULTS OF THE CORRELATION BETWEEN FMRI INDEPENDENT COMPONENTS AND PRESSURE STIMULATION SIGNAL 

Subject 
Block design session Event-related design session 

Correlation Lag α S Correlation Lag α S 

1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

 0.211 

-0.377 

 0.225 
 0.227 

-0.269 

 0.252 
-0.327 

 0.364 

-0.496 
 0.420 

-0.535 

 0.196 
 0.226 

-0.521 

-2 

-1 

 5 
-1 

-1 

 3 
-1 

-2 

 0 
-1 

-1 

 4 
 1 

-1 

0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

2.259 

3.962 

2.594 
2.609 

2.772 

2.519 
3.497 

3.820 

5.084 
4.467 

5.523 

2.089 
2.340 

5.380 

-0.148 

 0.302 

-0.196 
 0.195 

 0.188 

-0.298 
-0.179 

 0.479 

 0.484 
-0.352 

-0.531 

-0.108 
-0.365 

-0.334 

-1 

-1 

-1 
-1 

-1 

-1 
 0 

-1 

-1 
-1 

-1 

 1 
 5 

 0 

0.001 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.000 
0.000 

0.000 

0.001 
0.000 

0.000 

1.452 

3.172 

2.150 
2.086 

1.959 

3.086 
1.891 

4.946 

5.018 
3.682 

5.447 

1.463 
3.679 

3.468 

The correlation values and the related statistics refer to the most correlated independent component for each subject. 
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