
  

 

Abstract— Abnormal glucose variability (GV) is considered 

to be a risk factor for the development of diabetes 

complications. For its quantification from continuous glucose 

monitoring (CGM) data, tens of different indices have been 

proposed in the literature, but the information carried by them 

is highly redundant. In the present work, the Sparse Principal 

Component Analysis (SPCA) technique is used to select, from a 

wide pool of GV metrics, a smaller subset of indices that 

preserves the majority of the total original variance, providing 

a parsimonious but still comprehensive description of GV. In 

detail, SPCA is applied to a set of 25 literature GV indices 

evaluated on CGM time-series collected in 17 type 1 (T1D) and 

13 type 2 (T2D) diabetic subjects. Results show that the 10 GV 

indices selected by SPCA preserve more than the 75% of the 

variance of the original set of 25 indices, both in T1D and T2D. 

Moreover, 6 indices of the parsimonious set are shared by T1D 

and T2D. 

I. INTRODUCTION 

Diabetes is a chronic disease that occurs when the 
pancreas is no longer able to produce insulin (type 1 diabetes, 
T1D), or when the body cannot use it effectively to inhibit 
glucose production and stimulate glucose utilization (type 2 
diabetes, T2D) [1]. Prolonged raised blood glucose levels and 
anomalous glucose variability (GV) induced by diabetes are 
both considered to be risk factors for the development of 
long-term complications from diabetes. GV, in particular, has 
become the focus of considerable attention in the last 
decades, and several efforts have been devoted to design 
indices able to quantify it from either sparse self-monitoring 
blood glucose measurements or continuous glucose 
monitoring (CGM) profiles [2,3]. Popular metrics proposed 
in the literature include mean, standard deviation and 
coefficient of variation of glucose readings, number of 
readings within, above and below the euglycemic range, 
indicators measuring the amplitude of glucose excursions, 
parameters derived from nonlinear transformations of glucose 
values and quantifying the overall quality of glycemic control 
[4-10].  

Despite the large number of available GV indices, a 
“gold-standard” metric to quantify GV has not been 
identified yet, and a combination of indices is very likely to 
be needed in order to extensively characterize GV from 
glucose profiles. However, because some indices have very 
similar mathematical formulations or measure almost the 
same physiological entity, considering all available GV 
metrics may provide highly redundant information, and, 
actually, some indices could be of limited added value in the 
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characterization of GV within a diabetic population. Thus, a 
method that allows reducing redundancy in the 
characterization of GV, selecting a subset of indices that 
provides a parsimonious but still comprehensive GV 
description, could be desirable and necessary as well.  

In this context, the Sparse Principal Component Analysis 
(SPCA) technique is here proposed as a method to select a 
small subset of GV indices from a wider pool of metrics, 
preserving the majority of the total original variance of the 
data. SPCA is applied to a pool of established literature GV 
indices evaluated on CGM time-series datasets from both 
T1D and T2D, and results are compared to assess if there are 
selected GV indices shared by the two types of diabetes.  

II. MATERIALS AND METHODS 

A. Database 

Two CGM datasets of T1D and T2D subjects, 
respectively, were considered in the analysis.  

The T1D dataset was collected within the EU FP7 project 
“Diadvisor” (2008-2012) using the Dexcom SEVEN Plus 
CGM System and is made up of 4-day CGM time-series 
acquired from 17 T1D males.  

The T2D dataset was made available during the EU FP7 
project “Mosaic” and consists of CGM time-series measured 
by the Medtronic Guardian REAL-Time CGM System in 13 
T2D males, for an average period of 6 days. 

B. The original pool of 25 GV indices 

Twenty-five well-established literature indices for GV 
quantification were considered.  

In detail, this pool of metrics includes mean and sample 
standard deviation (SD) of all glucose readings, percentage 
coefficient of variation (%CV), mean of daily SDs (SDw), SD 
of daily means (SDdm), J-index, percentages of values below, 
within and above the euglycemic target range (70-180 
mg/dl), 50

th
 percentile, Inter-Quartile Range (IQR), range of 

glucose readings, and the Mean Amplitude of Glycemic 
Excursions (MAGE) index.  

Moreover, measures derived from nonlinear 
transformations of glucose values and quantifying the risk 
associated to a glucose profile were also evaluated. In 
particular, we considered the Low and High Blood Glucose 
Indices (LBGI, HBGI), the Average Daily Risk Range 
(ADRR), and the Blood Glucose Risk Index (BGRI); the 
Hyperglycemic and Hypoglycemic Indices, and the Index of 
Glycemic Control (IGC); the Glycemic Risk Assessment 
Diabetes Equation (GRADE) score, and the three 
contributions due to the different glycemic states, i.e., 
%GRADEhypo, %GRADEeu, %GRADEhyper; and, finally, 
the M100 index. For all these indices, hypo- and 
hyperglycemic thresholds, when involved in the calculation, 
were set at 70 and 180 mg/dl, respectively. We refer the 
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reader to [4-10] for recent literature review providing detailed 
mathematical descriptions of the considered indices. 

The 25 GV indices were evaluated on the CGM time-
series of the dataset under analysis. Then, before entering 
SPCA, each GV metric was mean centered and scaled (i.e., 
divided by its SD) in order to avoid any bias in SPCA results 
and facilitate the comparison of different datasets. 

C. SPCA 

SPCA is a two-step data processing technique introduced 
by Zou et al. in [10]. In our implementation (see also [11] 
for further details), the two steps consist in:  

(a) apply PCA to a matrix containing the normalized GV 
indices to retrieve the principal components (PCs) and select 
a small number of them (typically, 1 or 2), saving the 
majority of the original variance of the data;  

(b) since each PC is a linear combination (regression) of 
all GV indices and has no direct physiological meaning, 
apply to each of the selected PCs the Least Absolute 
Shrinkage and Selection Operator (LASSO) constraint, 
which allows obtaining sparse estimates of regression 
coefficients, maintaining in the PC regressor a reduced 
number of GV indices and still saving a high percentage of 
the total original variance. 

(a) PCA and formulation of the regression problem 

Let X be the n x m data matrix, where n is the number of 
observations (i.e., subjects of the considered dataset) and m 
is the number of variables (i.e., calculated GV indices). Let 
the covariance matrix of the data X be a general full matrix 
(i.e., the m variables are correlated among them). The aim of 
PCA is to find a linear transformation 

 Y = XS  (1)  

that allows reducing the correlation of the original data. In 
particular, we are searching for an orthogonal matrix S, such 
that the transformed data Y have a diagonal covariance 
matrix. Singular Value Decomposition (SVD) of the data 
matrix, used to compute PCA, allows expressing X as 

 X =USVT   (2) 

where U is an n x n orthogonal matrix collecting the vectors 

, Σ in an n x m rectangular diagonal matrix with 

nonnegative diagonal entries  known as singular 

values and V is an m x m orthogonal matrix whose columns 
are the eigenvectors of the matrix XTX , with associated 

eigenvalues . Since V is orthogonal, Eq. 2 can be easily 

rewritten as 

 XV =US  (3) 

and from this statement, it is straightforward to see that the 
transformation matrix S we are looking for is exactly the 
matrix V collecting the eigenvectors of XTX . As requested 
by the algorithm, in fact, V is orthogonal and the new data 
expressed as US have a diagonal covariance matrix (since 

U is orthogonal and Σ is diagonal). Thus, being S=V, the 
transformed data collected in the n x m matrix Y can be 
written as 

 Y = XV   (4) 

whose columns are the so-called PCs of the original data X.  
The main advantages of data decomposition through 

PCA is that PCs capture the maximum variability among the 
columns of X [10] and are sorted in decreasing order in 
terms of explained variance of the original data (i.e., the first 
greatest variance is explained by the first PC, the second 
greatest variance by the second PC, and so on); furthermore, 
PCs are uncorrelated and, thus, can be considered separately 
one from another. Typically, through PCA, p PCs (usually 
p=1,2) are selected and data dimensionality can be reduced 
from m (in our case m=25, the number of GV indices) to 
p<<m, with minimum loss of information. 

Regarding specifically the PCs, they are linear 
combinations of all the m variables with nonzero coefficients 
collected along the columns of the matrix V (coefficients are 
hereafter called loadings in agreement with [10]). As it 
appears from Eq. 4, in fact, the i-th column of V contains the 
loadings of the m variables allowing to obtain the i-th PC. 
Denoting now V = B, the problem of searching for the 

(unknown) loading matrix B can be seen as a regression 
problem. In particular, the i-th column of Y can be written as 

 
  (5) 

where β is a column vector of B collecting the loadings that 
allow transforming the original data into the i-th PC. Thus, 
for each selected PC, we are facing the problem of the 
optimum estimation of vector β from data yi. 

(b) LASSO estimation of sparse loadings 

PCA allows reducing data dimensionality through 
selection of uncorrelated PCs. As shown above, however, 
each PC is a linear combination of all the original variables 
with coefficients that are typically nonzero. The aim of the 
LASSO estimation is to reduce also the number of explicitly 
used variables, through the calculation of sparse loadings. 

Defining  the estimated vector of sparse coefficients, 

it is obtained from the solution of the following optimization 
problem 

 

  (6) 

where X j  is the j-th column of the data matrix X collecting 

the n observations of the same variable and  is a 

complexity parameter related to the number of loadings that 
will be shrunk to zero. As one can see from Eq. 6, the cost 
function is made up of two different terms: the first one is 
the residual sum of squares that, alone, would lead to a full 
estimated loading vector; the second one is the sum of 
coefficients absolute values, which is aimed to shrink some 
loadings exactly to zero, if  is large enough. The LASSO 

estimation, thus, allows us to select a small number of 
variables from a larger pool; the ensemble of the selected 
variables is able to preserve a great part of the variance 
originally explained by the whole set of measures. 
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III. RESULTS 

A. Parsimonious set of GV indices in T1D 

After the application of PCA to the data matrix, the 
number of selected PCs was determined so that at least the 
85% of the total original variance was saved. This constraint 
led us to select the first 2 (out of 25) PCs. In fact, as can be 
seen from the plot of the percentage explained variance as a 
function of the number of selected PCs reported in the left 
panel of Fig. 1, this number of PCs allowed going beyond the 
defined threshold (red horizontal line in the figure) and 
saving the 87% of the total variance originally present in the 
data. 

Then, since PCs were obtained as linear combinations of 
all GV indices, the LASSO estimation of sparse loadings was 
computed for each selected PC, to reduce the number of 
variables contributing to the regression. In particular, the 
maximum number of nonzero coefficients was set to 5 and 
the GV indices selected by SPCA were those corresponding 
to nonzero loadings. The number of nonzero coefficients, and 
thus of selected GV metrics for each PC, was determined as 
the smallest number of variables that allowed explaining at 
least the 75% of the initial variance in both datasets. From the 
inspection of right panels of Figs. 1 and 2, that show the 
percentage explained variance plotted against the number of 
selected GV indices per PC for T1D and T2D, respectively, it 
can be seen that the minimum number of metrics that allowed 
preserving at least the 75% of the original variance (red 
horizontal lines in the figures) in both cases was equal to 5. 
Thus, 5 was the chosen number of nonzero loadings per PC.  

 
Figure 1.  Dependence of SPCA results from the parameter values in T1D. 

In particular, the explained variance (%) is plotted as a function of the 

number of selected PCs (left) and, for the chosen number of PCs (i.e., 2), as 

a function of the number of selected GV metrics (right). Thresholds are 
shown in red and are set to 85% for the left panel and to 75% for right one. 

For the T1D dataset, with 5 (out of 25) GV indices for 
each of the 2 (out of 25) PCs, SPCA finally allowed 
explaining the 77% of the variance originally explained by 
the whole pool of the considered indices. The selected 
metrics, summarized in Table I for each PC, are thus 
sufficient for a parsimonious but still comprehensive 
characterization of GV in the considered population of 17 
T1D subjects. 

TABLE I.  RESULTS FROM SPCA – T1D 

SELECTED GV INDICES  

(EXPLAINED VARIANCE: 77%) 

PC #1 PC #2 

J-index %CV 

MAGE range 

ADRR LBGI 

IGC ADRR 

%GRADEeu Hypoglycemic Index 

B. Parsimonious set of GV indices in T2D 

The choice of SPCA parameters was developed as 
described for the T1D dataset.  

In particular, the number of considered PCs resulted 
equal to 2 also in this case, saving the 88% of the original 
variance (Fig. 2, left panel), and 5 GV indices were selected 
for each PC. 

 
Figure 2.  Dependence of SPCA results from the parameter values in T2D. 

In particular, the explained variance (%) is plotted as a function of the 
number of selected PCs (left) and, for the chosen number of PCs (i.e., 2), as 

a function of the number of selected GV metrics (right). Thresholds are 

shown in red and are set to 85% for the left panel and to 75% for right one. 

For the T2D dataset, with 5 (out of 25) selected GV 
indices for each of the 2 (out of 25) PCs, SPCA allowed 
explaining the 83% of the variance originally explained by 
all the considered metrics. Results obtained from the T2D 
dataset are summarized in Table II. 

TABLE II.  RESULTS FROM SPCA – T2D 

SELECTED GV INDICES  

(EXPLAINED VARIANCE: 83%) 

PC #1 PC #2 

J-index %CV 

ADRR 50th percentile 

BGRI %values below target 

%GRADEeu LBGI 

%GRADEhyper Hypoglycemic Index 

Remarkably, it can be seen from the comparison of 
Tables I and II that 6 out of 10 selected GV indices, i.e., J-
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index, ADRR, %GRADEeu, %CV, LBGI and 
Hypoglycemic Index, are shared by T1D and T2D. 

IV. CONCLUSION 

GV is a risk factor for the development of diabetes 
complications, and the indices available for its quantification 
are redundant in terms of conveyed information. In this 
work, we tested the possibility of using SPCA as a technique 
to determine, from a wide pool of GV indices, a smaller 
subset of metrics able to explain a large part of the total 
original variance present in the data. In particular, SPCA 
was applied to a pool of 25 well-established literature GV 
indices evaluated on 17 T1D and 13 T2D CGM time-series. 
Results show that SPCA allowed selecting 10 (out of 25) 
GV indices, with more than the 75% of the original variance 
saved in both datasets, thus coming out to be a valuable tool 
to provide a parsimonious but still comprehensive 
description of GV in diabetes. From our results, it can be 
also seen that 6 indices of the parsimonious set were shared 
by T1D and T2D, seeming to be independent from the 
specific dataset. Though interesting, this second result is still 
preliminary and the shared pool of selected indices cannot be 
interpreted as a “gold standard” combination of metrics to 
condense GV information. Larger datasets and a higher 
number of metrics for GV quantification have to be 
considered to strengthen and validate the results, and to 
robustly identify a subset of indices well-representative of 
GV in diabetes, regardless from the specific dataset.  
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