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Abstract— We suggest a solution to the following problem:
“Given multichannel linear source mixture data Y, and an
overcomplete dictionary, A, of source projections, ai, how
can we construct a complete basis, A0, by selecting columns
from A such that the sources X = A−1

0 Y are as statistically
independent as possible from each other?”. While conven-
tional independent component analysis (ICA) methods learn
the mixing matrix A0 from scratch given Y, we restrict
ourselves to selecting basis vectors from a known overcomplete
dictionary. We develop two methods based on modifications of
the maximum likelihood equivalent of the Infomax approach
and the reconstruction-ICA (RICA) algorithm. We show that
on realistic synthetic electroencephalographic (EEG) data our
algorithms can find the true sources in the case of a highly
coherent dictionary while requiring relatively fewer data points
compared to other algorithms. On real EEG data, our algo-
rithms obtain higher mutual information reduction.

I. INTRODUCTION

Independent Component Analysis (ICA) has been used in
many different contexts and has found a vast number of
applications in diverse fields of engineering, including but
not limited to blind source separation, neural networks, and
biomedical source localization [1]. The common underlying
model in these applications is given by

Y = AX, (1)

where Y ∈ RM×n is a data matrix in which each column
yt is a data vector, A ∈ RM×N is the mixing matrix,
and X ∈ RN×n is composed of N component (source)
activations. ICA aims to find the unknown mixing matrix
A such that the associated source activations (rows of
X∗ = A−1Y = WY ) are (maximally) statistically inde-
pendent of each other. For simplicity, it is usually assumed
that the mixing matrix is square, although extentions to other
cases are also possible [1], [2]. Learning is usually performed
without restrictions on A. Although different constrained
ICA algorithms have been considered in the past [3], the
constraint we use in this paper differs from previous efforts.

Unlike common ICA algorithms, we restrict ourselves to
selecting basis vectors from a pre-designated set with the
goal of finding maximally independent sources. To the best
of our knowledge, previous efforts for “source separation on
a fixed dictionary” focused on finding a sparse solution for
source activations X [4], [5], instead of aiming for the max-
imally independent solution. The dictionary of basis vectors
can be known a priori, or can be designed (constructed) in
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different ways depending on the application, e.g., lead-field
matrix for EEG. Although our constraint gives less freedom
in learning the mixing matrix, it has some advantages over
standard ICA approaches. In particular, since the solution
space is finite (although combinatorially large), our approach
requires less data than standard ICA to find the true mixing
matrix, as we demonstrate in our experiments.

One of the biggest problems with current simultaneous
sparse approximation approaches (joint sparsity or MMV)
is that the number of active sources can be assumed to be
sparse but the sparsity level k (the number of active sources)
is usually unknown, as in EEG/ECoG (electrocorticography)
problems. Given an EEG segment and a dictionary of pos-
sible sources, solving for a simultaneous sparse solution is
therefore problematic. Our approach handles this problem
by choosing M columns from the dictionary, and evaluating
how much mutual information is reduced by projecting data
onto the achieved complete basis set. Such a measure of
independence is needed to assess how well we recover
the unknown sources when we have no knowledge of the
sparsity of the sources other than the assumption of maximal
statistical independence among them. For most dictionaries,
any randomly selected M columns from the dictionary would
span the space that data lives in, but resulting sources would
not necessarily be independent.

The outline of the paper is as follows: Section II for-
mulates the conventional maximum likelihood (ML) ICA
algorithm and modifies it to derive BASICA selection frame-
work. Section II-B derives BASRICA algorithm using the
reconstruction ICA (RICA) formulation. In Section III, we
point out the connections of BASICA to M-SBL [6]. Section
IV performs tests on synthetic and real data.

II. METHODS

It was shown by [7] that the Infomax approach to the ICA
problem is equivalent to the maximum likelihood formulation
of data. The likelihood of the data, which is to be maximized,
can be expressed as

p(Y) =

n∏
t=1

|det A−1|ps(A−1yt) =

n∏
t=1

1

|det A|
ps(A

−1yt)

(2)

where ps(.) is the vector source density function. When A or
W is not invertible, the nonexistence of |det W| is handled
by the substitution of |det WWT|

1
2 in the undercomplete

case [2], which becomes equal to |det W| when W is
complete. Similar term for |det A| would be |det AAT|

1
2

when A is overcomplete.
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A. BASICA

Our goal is to select among columns of A the basis
set which provides independence among resulting source
activations. In order to be able to use the general maximum
likelihood ICA framework, we model the generating matrix
as Agen = AΓ

1
2 , a weighted selection of columns of A1.

The weight matrix Γ = diag(γ) is a diagonal matrix of size
N × N with nonnegative unknown values on the diagonal
which we will learn, with the idea that at the end of
the learning phase we are going to achieve M nonzero
elements in γ, therefore effectively selecting M columns of
the dictionary A. We denote the matrix of nonzero columns
of Agen as A0.

Adopting the methodology proposed in [2], we substitute
|det A| in (2) with |det AΓ

1
2 (AΓ

1
2 )T| 12 = |det AΓAT| 12 .

One should note that when γ has M nonzero values,
|det AΓAT| 12 is equal to the determinant of the underlying
forward model A0, and if γ has more than M nonzero
values, the determinant still exists. Here, we assume that
rank(Y) = M , so at least M columns of A will be needed
to explain the data, which ensures at least M elements of γ
will be nonzero.

The backward transformation to the source domain is
given by xt = A†genyt = (AΓ

1
2 )†yt, where A† denotes the

pseudoinverse of the noninvertible matrix A. Here, we should
note that although the pseudoinverse mapping to the source
domain for overcomplete dictionaries is not always used to
perform the ML overcomplete ICA framework [8], it suits
well for our problem, which is rather different than the
conventional overcomplete ICA. Since our goal is to find
a basis set of size M ×M instead of an overcomplete one,
xt = (AΓ

1
2 )†yt serves to compute the regular inverse on

the selected M columns of A in a weighted manner and
place it at the corresponding locations in N -dimensional xt

vector, such that xt has N−M zero values. With this source
mapping, we can write the data likelihood for our problem
as,

p(Y) =

n∏
t=1

1

|det AΓAT| 12
ps((AΓ

1
2 )†yt) (3)

Note that ps(xt) is a vector source distribution and can
be decomposed as ps(xt) =

∏N
i=1 psi(xti) under the inde-

pendence formulation. Here, we choose an analytical source
density function psi(.) to be able to explicitly write and
optimize (3). We use the super-Gaussian density psi(x) =
c sech(x), which has been shown to be suitable for EEG
sources in the past [9]. Moreover, the use of a super-
Gaussian source density also enhances the selection property
of the algorithm, namely the convergence to sparse γ and
equivalently large number of zero rows of sources X. It
should also be emphasized that although the actual sources
might have arbitrary variances, we fix psi(x) = Csech (x)
for each source, with zero mean and a fixed variance. The
zero mean condition is easy to satisfy by removing the mean

1The square root weighting Γ
1
2 is used instead of Γ to make the

connection to M-SBL more obvious

of the data, and we are able to allow fixed variance for each
source si due to the source equation xt = (AΓ

1
2 )†yt in (3),

i.e. the actual source variances are embedded in Γ. Sources
with higher variance will have higher γi.

Separating the vector source distribution in (3) into indi-
vidual scalar source distributions and taking the −2 log(.)
transformation of likelihood gives the following, which is to
be minimized:

L(γ) =n log |det AΓAT|

− 2

n∑
t=1

N∑
i=1

log psi(γ
1
2

i aT
i (AΓAT)−1yt). (4)

The vector ai is the i-th column of A. We minimize the
above quantity over γ, which is the only unknown in the
model. This approach involves computing the gradient of
L(γ) with respect to γ and rearranging the terms to achieve
the following fixed point update at the kth iteration,

γ
(k+1)
i = γ

(k)
i

2
∑n

t=1∇i(t)

naT
i Σ−1ai

. (5)

where Σ = (AΓAT) and the numerator is the derivative
of the second term in (4). We initialize the algorithm with
γ
(0)
i = 1,∀i, and perform the updates for a fixed number

of iterations, or stop once the changes in γ are below a
threshold.

B. BASRICA

In [10], Le et al. proposed an ICA algorithm called
Reconstruction ICA (RICA) using a soft reconstruction cost,
which is also applicable to the overcomplete ICA case.
Instead of finding the mixing matrix, RICA optimizes the tall
unmixing matrix W ∈ RN×M with the following objective
function.

min
1

2

n∑
t=1

‖WTWyt − yt‖22 + λ

N∑
j=1

n∑
t=1

g(Wjyt) (6)

We modify the RICA objective function such that it allows
for a basis selection from a known dictionary A. Using the
same idea as in Section II.A, we regard the mixing matrix
as a weighted selection of columns from the dictionary
A, namely Agen = AΓ, with the projection to the source
domain as xt = W

′
yt = (AΓ)†yt

2. If the data is whitened
by the sphering matrix S, such that ŷt = Syt, the source
equation can be rewritten as xt = Wŷt = (AΓ)†S−1ŷt.
Plugging W = (AΓ)†S−1 = ΓA(AΓ2AT)−1S−1 into (6)
gives the following function to be optimized for BASRICA.

min
γ

1

2

n∑
t=1

‖S−T(AΓ2AT)−1S−1ŷt − ŷt‖22 + . . .

. . .+ λ

N∑
j=1

n∑
t=1

g(γja
T
j (AΓ2AT)−1S−1ŷt) (7)

2Without loss of generality, we choose the weighting Γ contrary to Γ
1
2

in BASICA because it will enable us to optimize without the constraint
γ ≥ 0.
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To be consistent with the BASICA formulation we choose
g(.) = log(sech(.)). One of the benefits of this optimization
problem is that it allows us to use unconstrained solvers,
e.g. L-FBGS. Since RICA results in a degenerate solution
W (only M nonzero rows) without row normalization, we
expect ΓA(AΓ2AT)−1 to converge to N −M zero rows
as well, equivalently to a sparse γ. Moreover, the sparsity of
the solutions can be altered with the trade-off parameter λ.

III. BASICA AND M-SBL

In this section, we explore the connection of BASICA to
M-SBL which is the modification of sparse bayesian learning
(SBL) algorithm to the simultaneous sparse approximation
[6]. In [6], the negative log-likelihood for M-SBL is given
as,

LM−SBL(γ, λ) = n log |det
(
λI + AΓAT

)
|+ . . .

. . .+

n∑
t=1

yT
t

(
λI + AΓAT

)−1
yt. (8)

where λ is the noise variance parameter. Plugging psi(x) =
N (0, 1) into (4) for BASICA gives,

L(γ) ∝ n log |det AΓAT|+ . . .

. . .+

n∑
t=1

yT
t (AΓAT)−1AΓ

1
2 Γ

1
2 AT(AΓAT)−1yt

= n log |det AΓAT|+
n∑
t=1

yT
t (AΓAT)−1yt

≡ LM−SBL(γ, λ) , λ→ 0

We can see that M-SBL in the noiseless limit is a special
case of BASICA.

IV. EXPERIMENTS

We test our algorithms on synthetic data and real EEG data
to compare results with those of M-SBL and reweighted l1,1
which induces a Laplacian prior on the sources.

A. Simulated Data

Here, we compare the performance of our algorithms in
a realistic EEG scenario. We construct a coherent dictionary
A of EEG scalp maps of size M = 32, N = 100. We
obtain this dictionary by selecting a subset of columns that
are coherent with each other from the lead-field matrix. The
subset we choose creates a highly coherent dictionary with
mutual coherence of µ = 0.998, and average spatial map
correlation of 0.85.

For each trial, we randomly choose the support set of
size M , and obtain M realistic EEG sources from ICA
decompositions of earlier EEG studies. We generate data
as Y = AX, and applying different algorithms we try to
recover the true support set of sources. After convergence,
we extract the support set of size M by choosing M rows of
the resulting source matrix that has the highest power. We

calculate the success ratio for each algorithm with the below
formula after 100 trials

r =
1

100

100∑
k=1

|sk ∩ ŝk|/M. (9)

where sk is the true support set for trial k and ŝk is the
support set returned by the algorithm. Figure 1(a) shows
the comparison of 4 algorithms. It is seen that BASICA
and BASRICA outperform M-SBL and reweighted l1,1 in
terms of converging to the true support set in the highly
coherent dictionary. Our algorithms require fewer data points
to successfully identify the true sources.

50100 300 500 750 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of data points (n)

M
e

a
n

 S
u

c
c
e

s
s
 R

a
ti
o

 

 

BASICA

BASRICA

MSBL

L11

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of data points n (x10
3
)

M
e
a
n
 S

u
c
c
e
s
s
 R

a
ti
o

0
.0

5

0
.1

0
.3

0
.5

0
.7

5 1 2 5

1
0

2
0

3
0

4
0

6
0

(b)

Fig. 1. (a) Comparison of 4 algorithms on synthetically generated data with
a coherent EEG scalp maps dictionary (b) Perfomance of ICA + column
matching on the same type of data. ICA + column matching requires 500x
data points compared to BASICA and BASRICA (compare with (a)) to
recover 95% of the true sources

Another approach we investigated is performing regular
ICA, e.g. Infomax, on data Y and finding a mixing matrix
A′, followed by matching the columns of A′ to the closest
columns in dictionary A, in a one-to-one manner. Comparing
Figure 1(a) and 1(b), it can be seen that unconstrained ICA
requires many more data points to converge to the true
mixing matrix. This example shows an important benefit of
our proposed approaches for direct basis selection.

6641



TABLE I
PERCENTAGE OF EPOCHS FOR WHICH ALGORITHM i (ROW) PRODUCES MORE MIR THAN ALGORITHM j (COLUMN).

Algorithms Reweighted l1,1 M-SBL BASICA BASRICA MIRAMICA
Reweighted l1,1 · 97.14 0 17.14 2.86

M-SBL 2.86 · 2.86 5.71 2.86
BASICA 100 97.14 · 17.14 14.29

BASRICA 82.86 94.29 82.86 · 82.86
MIRAMICA 97.14 97.14 85.71 17.14 ·

B. Experiments on real EEG data

Given a real EEG data segment and a dictionary of
possible sources, it is a challenging task to assess how the al-
gorithms perform, due to the unknown nature of true sources.
Yet, for EEG source separation tasks it is widely accepted
that the sources are instantaneously statistically independent
of each other. Therefore, a measure of independence among
the sources, e.g. mutual information reduction (MIR) [11],
can serve well to compare the results of different algorithms.

MIRY (W ) = I(x)− I(y)

=

M∑
i=1

h(xi)−
M∑
i=1

h(yi)− h(x) + . . .

. . .+ log |detW |+ h(x)

= log |detW |+
M∑
i=1

h(xi)−
M∑
i=1

h(yi). (10)

The calculation of MIR requires a square unmixing matrix
W that relates the sources and data as X = WY. This fits
well with our methods, since the support set s our algorithms
select from the dictionary is of size M and we can assign
W = A−1s , where As is the matrix of selected columns.

We use 32-channel 256-Hz EEG data collected during
a rapid serial visual presentation task (RSVP). We first
perform an ICA mixture model on the entire dataset using
multi-model AMICA [12] with 10 mixture models, returning
10 square mixing matrices {A1,A2, . . . ,A10}. Dictionary
A is then formed by concatenating those individual ICA
models and removing the identical scalp maps. Multi-model
AMICA was previously shown to capture the possible non-
stationarities inherent in EEG data [12], thus forming a
tractable way of obtaining more sources than sensors from
EEG. The overcomplete scalp maps dictionary we obtain
with the above described method is of size M = 32, N = 63.

We extract 70 EEG epochs (data segments around events
of interest) of length 6 seconds. Using the dictionary A, we
run our algorithms separately on each epoch and compare
the resulting MIR values. In Table I, we perform a pairwise
comparison of the algorithms and measure the percentage of
epochs for which one algorithm results in a larger MIR than
the other. In addition to the algorithms examined before, we
also compare results with the maximum MIR for the individ-
ual ICA models returned by AMICA, namely MIRAMICA =
maxi MIR(A−1i ). It can be seen that BASRICA has the
highest likelihood of returning a larger mutual information
reduction over all pairwise comparisons. BASRICA obtained

a higher MIR than individual AMICA models on ∼ 82% of
the epochs (p < 0.025 on Wilcoxon signed-rank test). On
real EEG, BASRICA performs better than BASICA possibly
due to the data representation (error/noise) term in (7).

V. CONCLUSIONS

We modify Infomax and RICA to construct two algorithms
aimed at finding jointly active sources in the case of a
known overcomplete set of possible sources. While previous
attempts at underdetermined source recovery problems focus
on finding the sparsest solution, our algorithms aim at
finding the maximally independent sources. We show that
on simulated realistic EEG data our algorithms can recover
the true sources in the case of a highly coherent dictionary
while requiring relatively fewer data points compared to
other algorithms. In real EEG experiments, our algorithms
obtain higher mutual information reduction.
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