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Abstract— This paper presents a methodology to estimate a
learning rule that governs activity-dependent plasticity from be-
haviorally recorded spiking events. To demonstrate this frame-
work, we simulate a probabilistic spiking neuron with spike-
timing-dependent plasticity (STDP) and estimate all model
parameters from the simulated spiking data. In the neuron
model, output spiking activity is generated by the combination
of noise, feedback from the output, and an input-feedforward
component whose magnitude is modulated by synaptic weight.
The synaptic weight is calculated with STDP with the following
features: (1) weight change based on the relative timing of
input-output spike pairs, (2) prolonged plasticity induction, and
(3) considerations for system stability. Estimation of all model
parameters is achieved iteratively by formulating the model as
a generalized linear model with Volterra kernels and basis func-
tion expansion. Successful estimation of all model parameters
in this study demonstrates the feasibility of this approach for
in-vivo experimental studies. Furthermore, the consideration
of system stability and prolonged plasticity induction enhances
the ability to capture how STDP affects a neural population’s
signal transformation properties over a realistic time course.
Plasticity characterization with this estimation method could
yield insights into functional implications of STDP and be
incorporated into a cortical prosthesis.

I. INTRODUCTION

Characterization of synaptic plasticity is a critical goal in
order to gain insights into the dynamic signal transformation
properties of a neural population. Presynaptic and postsy-
naptic spiking events can contribute to persisting changes in
synaptic strength through long-term potentiation (LTP) and
long-term depression (LTD). Studies have shown that there is
spike-timing-dependent plasticity (STDP), where the relative
timing of presynaptic and postsynaptic events on the order
of tens of milliseconds contributes to changes in synaptic
weight [1]. However, the shape of the STDP function that
relates relative spike timing to changes in synaptic weight
varies between neural regions and has features that are
still unclear [2]. Furthermore, the in-vivo characterization
of STDP during natural behavior is an open research front.
It is our goal to further characterize plasticity by using
behaviorally recorded spike events to estimate how relative
spike timing of neurons influences the strength of their
functional connectivity.

Spike time recordings have been used in previous work to
estimate a nonlinear multiple-input, multiple-output (MIMO)
model of a neural region and used as the computational
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basis for a cognitive prosthesis [3]. Incorporation of activity-
dependent plasticity into the prosthesis model could en-
hance its functionality by more accurately capturing the
time-varying properties of hippocampal subpopulations. The
estimation methodology in previous work for the MIMO
model uses Volterra kernels to capture the nonlinear feed-
forward and feedback dynamics, while a generalized linear
model with basis function expansion is used to estimate
the kernels [4]. A further system identification step was
also performed in which the time-varying properties of the
MIMO model were tracked over time [5] [6]. The identified
feedforward kernels in the MIMO model characterize the
functional connectivity from input neurons [7]. Here, we esti-
mate functional synaptic plasticity by extending the previous
MIMO methodology to estimate an STDP learning rule that
describes weight changes of these functional connections.

Specifically, we estimate 1) how the relative timing of
spike pairs affects the amplitude of this weight change and
2) the time course of the induction of this weight change. We
use a neuron model with STDP that can be expressed with
Volterra kernel combination and basis function expansion in
the form of a generalized linear model. The relation between
the STDP learning rule and its equivalence to a second order
Volterra kernel can be seen in [8]. An iterative approach is
used to estimate all model kernels with maximum likelihood
estimation. In this study, we first simulate spiking output
for a probabilistic spiking neuron model with STDP using
hippocampal CA3 input. We then estimate the neuron and
STDP model using only the input and simulated output spike
timing. For a range of model parameters, we demonstrate that
neuron and plasticity rule can be estimated accurately.

II. METHODS
A. Neuron Model

The single-input, single output (SISO) model of a spiking
neuron can be seen in Fig. 1 where the subthreshold mem-
brane potential is the summation of the synaptic potential, the
afterpotential, and Gaussian white noise. When the threshold,
θ , is reached, an output spike, y, is generated. The after
potential is calculated by convolving each output spike
with the feedback kernel, h. The synaptic potential is the
convolution of the input spike with feedforward kernel, k.
An enhanced definition of this model can be found in [4].
The feedforward kernel is multiplied by the synaptic weight,
g, which is modeled with an STDP rule. First order Volterra
kernels are used for the feedforward and feedback kernels in
this simulation. The inputs into the model were generated by
resampling the interspike intervals from a hippocampal CA3
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Fig. 1. (Neuron Model) Spiking output is generated by a thresholded
combination of a feedforward component, feedback component, and Gaus-
sian white noise. (Plasticity Model)(A) Relative timing of x (input) and y
(output) spike pairs affect the amplitude of the change in weight. (B) STDP
induction occurs over a significantly longer time scale than STDP amplitude
functions. (C) The change in weight at each time step is multiplicative for
∆t < 0 spike pairs, and additive for ∆t > 0 spike pairs.
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Fig. 2. Figurative example of STDP learning rule. (1st spike pair, ∆t1 > 0)
causes an increase in ∆gxy with amplitude according to axy and with time
course according to the induction function ixy. g increases according to the
integration of ∆gxy. (2nd spike pair, ∆t2 > ∆t1) therefore the effect on ∆gxy
is less according to the amplitude function axy. (3rd spike pair, ∆t3 < 0)
causes a decrease in ∆gyx according to ayx and iyx. (4th spike pair, ∆t4 =
∆t3) occurs when g is lower than g at ∆t3, therefore due to the multiplicative
weight update for ∆t < 0, the change in g is less than that caused by ∆t3.
In this figure, the time scales of ∆t and plasticity induction are shown to
be closer than they are in the model for purposes of visual clarity.

recording with an average spiking frequency of 0.76Hz. A
time step of 1ms was used for the simulation.

B. STDP Model

The STDP rule models 1) the amplitude of the change
in weight versus the relative input-output spike pair timing
(ty − tx = ∆t) and 2) the time course of its induction. Since
the STDP amplitude function is discontinuous around ∆t = 0,
the model includes two separate amplitude functions axy for
∆t > 0, and ayx for ∆t < 0 (Fig. 1a). The shape of these
amplitude functions are based on experimental results from
[1]. The induction of plasticity occurs over a much longer
time scale than the tens of milliseconds of the plasticity
amplitude functions. We model plasticity induction the with
two functions, ixy for ∆t > 0 and iyx for ∆t < 0 (Fig.
1b). The time scale of the implemented plasticity induction
functions are on the time scale of tens of seconds as shown
in experimental results for long-term potentiation [9]. The
changes in weight are represented by ∆gxy for ∆t > 0 and
∆gyx for ∆t < 0,

∆gxy(t) =
Mi

∑
τx=1

τx−1

∑
τy=0

axy(τx − τy)ixy(τy)x(t − τx)y(t − τy) (1)

∆gyx(t) =
Mi

∑
τy=1

τy−1

∑
τx=0

ayx(τx − τy)iyx(τy)x(t − τx)y(t − τy) (2)

The weight dependence of the plasticity rule and system
stability must also be considered. A purely additive rule,
where ∆g = ∆gxy +∆gyx is unstable: every weight increase
will increase the likelihood of subsequent input spikes to
cause output spikes which leads to an even larger increase
in synaptic weight. One way to achieve system stability is to
make the effective change in weight be multiplied by the
current weight (multiplicative) instead of purely additive.
Analysis of experimental results in [10] demonstrates that
a multiplicative update rule is a better fit to depression
data while additive update is a better fit to potentiation
data. To achieve system stability and to be in line with
experimental analysis, we incorporate a multiplicative weight
for the depressive portion of the rule ∆gyx and an additive
for the potentiation portion ∆gxy as shown in (3) and seen in
Fig. 1c. The magnitude of synaptic weight fluctuations can
be controlled by modifying the relative magnitude of axy and
ayx. The weight at the first time step is initialized to g0.

g(t) = g(t −1)+∆gxy(t)+∆gyx(t)g(t −1) (3)

C. Estimation

The amplitude functions, (axy and ayx), and induction func-
tions, (ixy and iyx), can be expanded with L basis functions
in order to ease estimation. Below is an example of axy basis
function expansion in summation and vector multiplication
form, where baxy(t) has dimensions 1 × La and caxy has
dimensions La ×1.
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Fig. 3. Neuron and STDP model estimation results. Two lines for each estimation result show upper and lower 95% confidence bounds generated from
fits to 10 sets of simulations. (A) Varying the amount of simulated data used for estimation shows the increased estimation fidelity with longer simulated
data (single-input). (B) Increasing the number inputs in the simulation from one to five enhances model estimation (67 minutes of simulated data).

axy(t) =
La

∑
ja=1

c( ja)
axy b( ja)

axy (t) = baxy(t)caxy (4)

Therefore, ∆gxy and ∆gyx can be expanded in the following
manner,

∆gxy =
La

∑
ja=1

Li

∑
ji=1

c( ja)
axy c( ji)

ixy
v( ja, ji)

xy (t) = cT
axyVxy(t)cixy (5)

v( ja, ji)
xy (t) =

Mi

∑
τx=1

τx−1

∑
τy=0

b( ja)
axy (τx − τy)b

( ji)
ixy

(τy)x(t − τx)y(t − τy)

(6)
where Vxy(t) is a La ×Li matrix with elements v( ja, ji)

xy (t).
Expansion with Laguerre basis functions is used for the

feedforward, feedback, and induction kernels [11], while B-
spline basis functions are used for amplitude kernels [12].

The firing probability of the full spiking neuron model
with plasticity can be represented by

Pf (t) = Φ([−1+vk(t)ckg(t)+vh(t)ch]/σ) (7)

g(t) = g(t −1)[1+ cT
ayx Vyx(t)ciyx ]+ cT

axyVxy(t)cixy (8)

where Φ() is the cumulative distribution function of the
standard normal distribution.

The goal of the estimation procedure is to fit the param-
eters ĉk, ĉh, ĉaxy , ĉayx , ĉixy , ĉiyx , σ̂ in order to reconstruct all
model functions. Parameter estimation can be achieved by

manipulating (7) into the form of a generalized linear model
[4] and using the iterative reweighted least squares followed
with normalization by σ̂ .

The feedback of the previous weight in (8) makes the
ĉayx and ĉiyx terms unable to be linearly separable. However,
these terms can be optimized individually using a Nelder-
Mead simplex search method for unconstrained nonlinear
estimation while doing generalized linear model regression
on the remaining parameters. ĉk, ĉaxy , and ĉixy , can be
estimated iteratively, one at a time, while holding the other
two fixed. This is equivalent to the block relaxation algo-
rithm proposed in [13] for rank-1 generalized linear tensor
regression. In practice, ĉk, ĉaxy , and ĉixy , estimates converge
in two iterations. Because the functional consequences of ĉk,
ĉa, and ĉi in the model only rely on their relative values and
their multiplied product, these parameters are normalized so
that the integrals of the induction kernels equal 1 and so that
the feedforward kernel has magnitude ĝ0.

III. RESULTS

Model estimation was performed when varying the length
of simulated data and the number of inputs into the model.
Several estimation trials with different randomly generated
inputs and distinct simulated noise were performed with
each set of simulation parameters to assess the reliability of
the estimation procedure. Fig. 3 shows the 95% confidence
bounds for the model estimation with 10 trials. When only 17
minutes of simulated data is used for estimation, the STDP
rules had poor fits. However, the fidelity of the fits increased
when simulated data length was extended to 67 and 200
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Fig. 4. Example of resampled CA3 input (x), simulated spiking output (y),
simulated and estimated weight fluctuation (g) during a typical trial. (Single
input, only first 30 minutes out of the 67 minutes used for estimation shown).
Firing frequency is plotted instead of spike trains for the sake of visibility
on a 30 minute time scale.

minutes. Successful estimation of the STDP functions are
shown with both one and five inputs into the model.

The shapes of the feedforward and feedback kernels were
always estimated very accurately. The magnitude of the
estimated feedforward kernel is the initial weight estimate,
ĝ0, which sometimes varied from the simulated initial weight
g0. However, ĝ0 can deviate from g0 while still having an
accurate estimation of the synaptic weight over the course
of the simulation (as seen in Fig. 4). The plotted weight
estimation in Fig. 4 was chosen because it was the trial
(with 1 input and 67 minutes) with the highest rms error in
estimated vs. simulated weight in order to show that even the
worst weight estimation from this procedure is still robust.

IV. DISCUSSION

The successful STDP estimation in this study demonstrates
the feasibility of this approach for use in experimental
studies. Additionally, we see that at least an hour of recorded
data may be necessary for estimation and that multiple inputs
may enhance the learning rule estimation ability.

There were several assumptions made in the proposed
activity-dependent plasticity structure, however the general
method could be applied to a wide variety of assumptions.
For example, the presented pair-wise learning rule could
be extended to include triplets or higher order spiking
interactions. Additionally, the Volterra kernels used in the
feedforward component of this model could be enhanced
from one to higher orders to capture additional nonlinear
properties. The system stability assumptions of using multi-
plicative learning rule for ∆t < 0 could also be expanded.

The framework proposed here has many advantages for the
estimation of a plasticity rule. The basis function expansion
allows a wide variety of function shapes to be captured with

a small number of open parameters. Allowing a disconti-
nuity in basis functions for ∆t < 0, and ∆t > 0 allows a
careful analysis around ∆t = 0 which has implications for
the Hebbian nature of the learning rule. Delayed induction
allows plasticity to be characterized on a realistic time scale
which is also important for the stability of the system. The
feedforward model portion was affected by three different
sets of functions (k, a, and i), however an iterative estima-
tion approach allowed each of these functions to optimized
individually. Additional functions which affect plasticity can
be folded into the model and estimated in a similar manner.
This is also an improvement over previous learning rule
fitting [14] because all parameters were estimated in one
step without reliance on an intermediately estimated quantity.
The next step for this estimation procedure is to evaluate its
efficacy and results with in-vivo experimental data.
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