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Abstract— PURPOSE: The purpose of this study is to 

evaluate the uncertainties of an electromagnetic (EM) tracking 

system and to improve both the trueness and the precision of the 

EM tracker. METHODS: For evaluating errors, we introduce 

an optical (OP) tracking system and consider its measurement 

as “ground truth”. In the experiment, static data sets and 

dynamic profiles are collected in both relatively less-metallic 

environments. Static data sets are for error modeling, and 

dynamic ones are for testing. To improve the trueness and 

precision of the EM tracker, tracker calibration based on 

polynomial fitting and smooth filters, such as the Kalman filter, 

the moving average filter and the local regression filter, are 

deployed. RESULTS: From the experimental data analysis, as 

the distance between the transmitter and the sensor of the EM 

tracking system increases, the trueness and precision tend to 

decrease. The system’s trueness and jitter errors can be 

modeled as the 3rd order polynomial error equations. After 

minimizing the positional error and applying smoothing filters, 

the mean value of error reduction is 36.9%. CONCLUSION: 

Our method can effectively reduce both positional systematic 

error and jitter error caused by EM field distortion. The 

method is successfully applied to calibrate an EM tracked 

surgical cautery tool. 

I. INTRODUCTION 

Tracking systems that have been utilized to track the 
position of devices relative to a patient’s body can 
significantly improve image-guided surgery. Sensors can be 
attached to medical instruments so that the instrument 
positions are detected. They have been applied in 
interventional imaging, minimally invasive surgery, and can 
be integrated into instruments, such as needles and ultrasound 
probes. The most popular 6-degree-freedom (6-DOF) tracking 
systems in medical devices are optical (OP) tracking systems 
and electromagnetic (EM) tracking systems. Vision-based OP 
tracking systems are very accurate, but they suffer from a 
line-of-sight problem between optical markers and tracker 
cameras. EM tracking systems are relatively inexpensive and 
more portable. They do not have a line-of-sight problem from 
sensor coils to field generators, which means that EM trackers 
are more easily integrated into dynamic procedures such as 
open surgical navigation.  

 
Yu Qi is with the Department of Electrical and Computer Engineering, 

Queen’s University, Ontario K7L 3N6, Canada (phone: +1-613-985-8817; 

e-mail: yu.qi@queensu.ca).  
Hossein Sadjadi is with the Department of Electrical and Computer 

Engineering, Queen’s University, Ontario K7L 3N6, Canada (email: 

h.sadjadi@queensu.ca).  
Caitlin T. Yeo is with the School of Medicine, Queen’s University, 

Ontario K7L 3N6, Canada (email: cyeo@qmed.ca).  

Keyvan Hashtrudi-Zaad is with the Department of Electrical and 
Computer Engineering, Queen’s University, Ontario K7L 3N6, Canada 

(email: khz@queensu.ca). 

Gabor Fichtinger is with the School of Computing, Queen’s University, 
Ontario K7L 3N6, Canada (email: gabor@cs.queensu.ca). 

An EM tracking system consists of an EM field generator, 
6-DOF EM sensors, and an electronics unit. The EM field 
generator consists of a minimum of three coils in a Cartesian 
coordinate system. Magnetic fields are created when current 
flows. The EM sensors contain a minimum of three receiving 
coils. When the EM sensor is located in the magnetic field, 
voltage is induced in the sensor coils. The EM system can 
calculate the position and orientation of the sensor by using 
the induced voltages in the sensor coils. It can track an object’s 
position and orientation in real-time.  

However, as the tracking system depends on an 
electromagnetic field, the tracking accuracy is affected by 
excessive electrical noise and magnetic field distortion. When 
the EM sensor is at rest, the measurement data will contain 
some random jitters centered on a stable position. The causes 
of the noise are from both internal and external sources. 
Internal sources include amplified electronic component 
thermal activity, variations in measurement timing, algorithm 
errors, and other sources. External factors have a larger effect 
on the measurement noise. These factors include metallic 
objects within the field, noise generated by electrical circuits, 
fluorescent lighting, power supplies, and wiring with current 
that varies over time. In addition, magnetic field strength 
decreases with distance from the generator. Therefore, as the 
distance between the EM transmitter and the EM sensor 
increases, the uncertainties including bias and jitter error of the 
EM system measurement become bigger [1].  

In this work, we analyze and reduce the EM tracking error. 
We introduce the OP tracking system and consider its outputs 
as ground truth, against which the uncertainties of the EM 
tracking system will be measured. We model and reduce both 
positional and jitter errors. We illustrate the practical 
application of these methods on an EM tracked surgical 
cautery tool that contains an electric circuit and a small 
metallic tip that moves in the distorted magnetic field. 

II. RELATED WORK  

In prior literature, researchers proposed many 
experimental protocols for the assessment of error in the EM 
tracking system. For example, Hummel et al. [1, 2] evaluated 
the EM system by using a precisely manufactured 
polycarbonate measurement plane. Frantz el al. [3] proposed a 
system combined with an OP tracking system. They employed 
a hemispherical calibration device as a phantom which 
involves reference and registration.  

Several researchers have proposed calibration techniques 
to improve the reliability of EM trackers. Fairly good results 
can be accomplished with interpolation methods - such as 
Hardy’s multi-quadric interpolation by Zachmann et al. [4], 
neural networks described by Saleh et al. [5], and high-order 
polynomial fit [6]. According to the summary of tracker 
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calibration techniques from [6], the polynomial fit method and 
the Hardy’s multi-quadric method produced the best results.  

There are some limitations of these prior studies. For 
example, the precise measurement plane by Hummel et al may 
not be convenient to evaluate 3D free motion profiles. To 
reduce the positional error, researchers apply an interpolation 
method; however, this method cannot provide a certain error 
model outside the pre-measured range in mathematical 
expression. Zachmann et al.’s robust method has not tested the 
effect of small metal changes in the measurement 
environment. The error model as 3

rd
 or 4

th
 degree polynomial 

equations is another common way; however, 3
rd

 or 4
th

 degree 
error modelling is not accurate when the EM senor is near the 
transmitter. Also, despite tracker calibration (the reduction of 
positional error) there still exists jitter problems. Researchers 
have only compensated for positional errors of static 
distortions, in static non-metallic or static metallic 
environments only. They have not described the situation 
where the metal moves together with the EM sensor, with 
respect to the EM transmitter.  

III. MATERIALS AND METHODS  

We designed experiments and analyzed positional errors 
and jitter problems of the EM tracking system by introducing 
the OP tracking system as the ground truth measurement. 
Then we reduced the systematic positional error by the 
polynomial fitting method. Next, several different smoothing 
filters were applied to solve the jitter problem. Finally, we 
tested the practical application of our error analysis and 
reduction method on an EM tracked surgical tool with a 
pointed tip.  

The main elements in the experiment were the EM 
tracking system (3D Guidance trakSTAR and sensor 800, 
Ascension, Burlington, VT), a wooden board with 7×7 drilled 
holes spaced 50 mm apart, the OP tracking system (Northern 
Digital Inc., Waterloo, ON), and a needle-point wooden stick 
combined with an EM sensor and an OP marker. The OP and 
EM auxiliary software packages were provided by each 
tracking system, and PLUS (www.PlusToolkit.org) provided 
synchronized acquisition of data. Matlab (Mathworks, Inc, 
Natick, MA) was used to analyze the data. 

A.  Measurement Error Analysis 

We collected data sets containing transformation matrices 
of the sensor/marker frame with respect to two tracking 
system reference frames. There exists some lag between the 
two sets of measurement data acquired by the software 
packages of the EM and OP tracking system. We used the 
cross-correlation method to compensate for the time delay. 
Then we conducted the least square based pivot calibration in 
order to calculate the transformation matrices between the tool 
tip frames with respect to the sensor frame. The tooltip was 
kept stationary while the combined needle-point tool was 
pivoted in a cone shape. At least three poses with the 
combined tool were necessary for computation. After that, the 
point-based registration by Horn’s quaternion method [7] was 
needed to build the ground truth provided by the OP tracking 
system in the EM reference frame. Finally, the error analysis 
of EM tracker and error models, and the reduction of 
positional and jitter error were accomplished. 

Fig. 1 shows the experimental setup. The coordinate frame 
{OP} is the reference frame of the OP tracking system; 
{OPM1} is the frame of OP marker1, and {OPM2} is the 
frame of OP marker2. The coordinate frame {EM} is the 
reference frame of the EM tracking system; {EMS} is the EM 
sensor frame. The {tooltip} is the frame of the tooltip. We 
needed to compute the {tooltip} with respect to {OPM2}, 
referred to as the unknown homogenous transformation 

     
       

 and the {tooltip} with respect to {EMS}, referred to 

as the unknown homogenous transformation     
       

. The 

calculation can be accomplished by the pivot calibration 
process, using the least square method. In addition, the 
unknown transformation matrix from OP reference frame to 
EM reference frame should be computed during the 
point-based registration process. Since the dynamic 

transformation     
   would change if the OP camera and the 

EM transmitter were moved relatively, we decided to set 
OPmarker1 frame as the OP system reference frame and 

calculate    
    , which gave a constant transformation from 

the OPmarker1 to the EM transmitter. Equation (1) shows the 
tooltip measurement by the EM tracking system in the EM 
frame and (2) is the tooltip measurement by the OP tracking 
system in the EM frame: 

    
       

    
        

       
 

    
       

    
          

      
          

       
 

The positional error of the EM tracker could be computed as 
the Euclidean distance between OP measurements and 
corresponding EM measurements in EM frame. The jitter 
error, also known as the random error, describes the deviation 
of the EM measurements at a position over a certain period. It 
can be represented as the root mean square error (RMSE) 
between the mean value of all samples for each location and 
each sample. It represents the precision of the EM tracking 
system.  

B.  Systematic Error Reduction  

The goal is to calculate the systematic positional error (also 
unknown as the systematic bias) model of the EM tracker in a 
certain environment, and then to compensate it in order to 
improve the reliability of the EM tracking system. In this 
work, we used the static measurement data set and calculated 
the systematic error function by the least-square polynomial 
fitting method. We found the coefficients   that made the 

 
Fig. 1 Experimental Setup Extractions. 
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overall solution minimized to a function that was a sum of 
squares, as seen in the following equation:  

   
 
‖ (      )     ‖ 

  
   
 
∑ ( (       )      )

  
  

Here ‘data’ is the input data for computing the model. ‘ ’ is 

the coefficients of the model; ‘ (      )’ represents the 

model we generalized; ‘act’ is the actual data that we want to 

fit; ‘ (       )      ’ shows the residual, the difference 

between an actual value and the fitted value provided by the 

model. The distorted position measurement ( ̂   ̂   ̂ ) from 

the EM tracking system and the corresponding ground truth 

location (         ) from the OP tracking system were 

collected. The equation      (        )  ( ̂   ̂   ̂ ) 
defines the positional error vector for any measured position 

in the EM system. General equations for the polynomial data 

fitting can be generated in the form of [8].  

C.  Random Error Reduction  

Through the observation of the static experimental data 
set, the jitter error (           ) could be modeled as a 3

rd
 

order polynomial function of each tool tip position (x, y, z). 
This approach is similar to the one used in the positional error 
model during the tracker calibration procedure. In this step, 
three filtering methods – Kalman filter, moving average 
filtering and local regression filtering was applied to the 
dynamic measurement data so that the noisy data could be 
smoothed, and consequently, the jitter error was minimized. 
Kalman filter estimates the current state from noisy 
observations and the process model. Moving average is 
dependent on the values of several neighboring 
measurements both in the past and in the future. Local 
regression is based on the locally weighted polynomial fitting 
without prior assumptions of the equations.  

Kalman filter estimates the states of a linear system and it 
can minimize the variance of the estimation errors. The 
computationally efficient Kalman filter is an optimal 
recursive least squares estimator for linear systems with 
zero-mean white Gaussian noise. Kalman filters are 
commonly used to remove the noise from signal. In the linear 
process model that we are measuring, process noise 
covariance and measurement noise covariance are required. 
The process model can be formed according to the Newton 
dynamic equations. The state equation and its initialization 
are explained by [9, 10]. The measurement model:  𝑘  
H (𝑘) + 𝑣(𝑘), 𝑣𝑘~𝑁(0 𝑅).  𝑘  is the measurement output of 

the EM tracking system, which only contains the position 
information; therefore, we set the measurement velocity term 
as [0 0 0]𝑇, and as a consequence, H matrix, known as the 
“measurement matrix”, relates the state to the measurement 
data  𝑘. It is   [   0 ]. 𝑣𝑘 is the measurement noise. In this 
part, we need to compute the measurement noise covariance 
R, defined as the variance of the measurement noise which 
derives from the EM tracking system’s jitter error. 𝑅  
[           

    ].  

Other commonly used methods for smoothing data in 
general are moving average and local regression filtering. 
Moving average filter is optimal for a common problem in 
time domain. It operates by replacing each point with 
averaging each y[i] with its N nearest neighboring points in 

the past and its N nearest neighbors in the future. Moving 
average is given by the following equation:  

   [ ]  
 

    
∑  [ +  ] 
     

where   [ ] is the smoothed data for the     point; ‘𝑁’ is 
the moving window, the number of neighbors on either side of 
  [ ], and  𝑁 +   is the span. Computing the current data 
requires the measurement time-steps in the past and in the 
future. The filter cannot be initiated well until several steps 
measurements have been made. Furthermore, this method 
emphasises equally on all data points, which means it 
considers the sensor positions near and far from the EM 
generator as the equal influence.  

Each smoothed data is provided by the neighboring data 
within the span in the local regression method. It is assumed 
that a small group of neighboring points can be fitted as some 
function, and the points near the estimation have more weight 
and are more relative to each other. A locally weighted linear 
least-squares polynomial regression of 1

st
 or 2

nd
 degree was 

applied in this process. A common tri-cube weight function is 
described in [11]. We chose 15 to 25 neighborhood points and 
the linear fit. Only data in the span has weight on the 
polynomial fit. The local regression is a nonparametric 
regression method, which means that it does not need the 
specific function to fit a model, and also it is convenient and 
flexible for some complex systems without theoretical models.  

D. Application 

 The practical application of the method described above is 
tested on an EM tracked surgical cautery device that contains 
metallic parts. The metallic pointed tip of the device distorts 
the electromagnetic field. As a consequence, the pivot 
calibration and registration transformation matrices may 
become unreliable. Additional computational errors should 
be avoided. Therefore, we used a wooden needle-point stick 
with an EM sensor and an OP marker in the experiment to 
evaluate the uncertainty. Once the error caused by EM field 
distortion is modeled, we can then utilize the surgery tool 
with an EM sensor, shown in Fig. 2 in further application.  

 
Fig. 2 Experimental setup, application of the EM tracker. 
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IV. RESULTS AND DISCUSSION  

Many previous studies assume that there is no error when an 
OP tracker is introduced. In our study, we discovered that the 
systematic error from the OP tracking system was quite small 
so we could neglect it. However, the pivot calibration and the 
registration experiment processes may create errors. 
Inevitably, there was some combined error as the OP tracker 
was registered onto the EM frame as ground truth 
measurement. Statistically, the combined error was around 
0.45 (mm) in this project. It was negligible compared with the 
error from the EM tracker.  

Fig. 3 visualizes the positional and the jitter error, 
respectively, of the EM tracking system in one z plane. We 
have three different z planes in total. The EM generator was 
located on the origin. The grids plotted in the figure are the 
locations of the tool tip in the EM reference frame. 
Approximately 900 samples were collected for each location, 
and the measurement rate was 80Hz. As the tool tip moves 
further from the EM generator, the jitter error and the 
systematic positional error increase gradually. According to 
the plots of the measurement data and the corresponding 
positional error, we calculated the positional error model as 1

st
 

order to 5
th
 order polynomial equations. Our results showed 

that the model should be a 2
nd

 or 3
rd

 order polynomial 
equation. A 2

nd
 order polynomial fits especially well when the 

distance between the EM sensor and the EM transmitter is 
within 350 (mm). When the sensor moves further, a 3

rd
 

polynomial equation is a better fit. Higher-degree polynomials 
will over-fit the data and introduce more error. 

Fig. 4 illustrates the error between the ground truth and the 
EM measurement of a 3D random motion profile. The 
measurement data has been down-sampled for clarity. The 
polynomial error function calculated from the static data set 
has been tested by a random motion. The error decreased from 
66.7% to 16.2%, and the mean value of the error reduction is 
36.9%. Our positional error function works very well on the 
error reduction. However, the models may vary, as they are 
based on large amounts of static experiment data and the 
external environment. Fig. 5 represents the error between the 
ground truth and EM measurements after different smoothing 
filters. The three smooth filters give similar outcomes overall.  

Kalman filter, which relies on the process model and the 
measurement noise, provides the minimum variance of the 
estimation error. The filter prefers measurement information 
when the measurement noise is relatively smaller than the 
uncertainty of system model; if the measurement error 
becomes bigger, the filter would emphasize more on the 
process model. Kalman filter would work perfectly almost 

without the influence of outliers, once the jitter error function 
is Gaussian and certain.  

Moving average and local regression filters are easier to 
use. However, they consider all measurement points as 
equally accurate. In our case, we compensated for the 
positional bias first, and then deployed smooth filters, and they 
could provide reasonable results. Moving average filter can 
avoid lags in smoothed measurement caused by using only 
previous data. However, it may invert the peaks and troughs in 
the measurement data, unless the window is shortened 
properly. The number of points chosen affects the smoothness 
of the result. We initialize the window size as 15 data points. 

Local regression method, based on the weighted local 
polynomial fitting, works well with the proper sample size. 
Quadratic fit provides less error than linear fit. If the size is too 
small or too big, or if we choose a higher order polynomial 
without increasing points, the smoothness decreases. In our 
case, we chose 15 to 25 neighboring points and the linear fit. 
This method does not require a specific theoretical equation to 
fit. However, the outlier in measurements may impact on the 
smooth result, and the robust version can reduce the distortion 
by outliers. It is computationally intensive, and it cannot 
provide a regression function to describe the smoothing 
process in the mathematical sense.  

Therefore, as we compensated the systematic positional 
error first and then found reasonable noise function, we 
preferred to use Kalman filter smoothing which is dependent 
on not only the noisy measurement but also the process model. 
(Robust) Local regression method is an alternative choice if 
people do not need a specific mathematical expression or the 

 
Fig. 3 Positional and jitter error from (76, 166, 37) (mm) to (381, 471, 

50) (mm). The EM generator is on the origin (0, 0, 0). 

 
Fig. 4 Error between ground truth and EM measurement before and after 

tracker calibration and smooth filter. 

 
Fig. 5 OP-EM error after different smooth filters. 
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noise property of the measurement is totally unavailable. 
Moving average is our least choice since the window size 
should be chosen carefully and it does not have significantly 
better results.  

Fig. 6 shows the random motion and the error between the 
ground truth and the measurement from the EM sensor 
attached on the surgical cautery device, and the error after 
application of positional error reduction calibration and local 
regression smoothing filter. We calculated the error functions 
from a set of static measurement data, then we applied them to 
the random motion profile. The maximum error is reduced 
from 4.6 mm to 2.4 mm.  

Since the external environment was relatively less-metallic, 
the distance between the EM sensor and the transmitter, and 
the metal part of the needle were the main influential elements 
on the EM tracking performance. Since the metal was not too 
big, we tried the polynomial method to decrease positional 
error. From the experimental data, the model can compensate 
for the EM tracker positional error very well. Compared with 
the look-up table and trilinear interpolation method, which 
requires more measurement points with topology information, 
this method is faster. Moreover, our error model can provide 
better error values than the interpolation method when the 
measurements exceed the range of the static pre-measured 
look-up table. Despite the metallic components of the surgical 
device, there was a significant reduction in EM tracking error 
using our method, suggesting the practical application for this 
method of error reduction.  

V. CONCLUSION AND FUTURE WORK 

Based on the theoretical study of previous works, we 

designed an experimental setup to measure both the 

positional and the jitter error of the EM tracking system. The 

error analysis shows that as the EM sensor moves far from the 

EM generator, both the trueness and the precision decrease. 

This conclusion is consistent with the theoretical analysis. 

The positional and the jitter errors were modeled and reduced 

successfully. We also applied the similar method to decrease 

the error by EM sensor combined with cautery device. It is 

challenging identify a certain method for different 

environments. The polynomial error models may slightly 

introduce additional errors in some locations. For smooth 

filters, the biggest challenge of Kalman filter is to compute 

the statistical properties of the measurement noise. Moving 

average and local regression filters consider the whole points 

within workspace as equal reliability, which is not always 

reasonable. Our future work is to examine our method for 

various environments and other applications, to test and 

compare other modeling methods for the positional error, and 

to design a faster online error reduction method.  
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Fig. 6 Random motion before and after tracker calibration. 
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