
  

 

Abstract— Decoding algorithm in motor Brain Machine 

Interfaces translates the neural signals to movement parameters. 

They usually assume the connection between the neural firings 

and movements to be stationary, which is not true according to 

the recent studies that observe the time-varying neuron tuning 

property. This property results from the neural plasticity and 

motor learning etc., which leads to the degeneration of the 

decoding performance when the model is fixed. To track the 

non-stationary neuron tuning during decoding, we propose a 

dual model approach based on Monte Carlo point process 

filtering method that enables the estimation also on the dynamic 

tuning parameters. When applied on both simulated neural 

signal and in vivo BMI data, the proposed adaptive method 

performs better than the one with static tuning parameters, 

which raises a promising way to design a long-term-performing 

model for Brain Machine Interfaces decoder. 

I. INTRODUCTION 

Brain machine interfaces (BMIs) build an alternative 
pathway for the communication between the brain and the 
outside instruments. Neural activity collected from motor 
cortex can be translated to movement position or velocity, 
helping animals or paralyzed patients to finish tasks like lever 
pressing, 2-D or 3-D target tracking or self-feeding [1-4]. 

Several signal processing algorithms have been carried out 
to seek the neural representation of animals’ kinematic 
parameters in motor cortex. One study performs the standard 
linear or nonlinear regression using the binned spike trains [5, 
6]. They avoid the specific tuning model, which explains how 
the information been encoded in the neural activities. Yet 
another study takes the probabilistically Bayesian recursive 
formulation, which involves the neural tuning property [7-10]. 
They usually assume that the tuning function is stationary. 
Once the decoding model is obtained from the training set, the 
parameters will be fixed and applied to the whole decoding 
process. 

However, more and more evidences have shown that the 
connection between the neural firing and movements keeps 
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changing over time [5, 11]. For example, a micro-electrode 
may pick up a different neuron in neighbor, due to the minor 
shift happens between the electrode and the cortex during 
breathe or individual neuron dies. Also, neurons are proved to 
be plastic even in practicing a simple task [12]. Bizzi found 
many cells changed their tuning properties after an extra force 
field added to the experiment, and this change can be 
memorable or memory-less [13]. As a result, decoding with a 
static model will receive a worse performance as time 
progresses into testing [10]. 

Many works have addressed on this problem. One option 
is to update the parameters of an adaptive model when new 
observations are available [14-18]. Alternative option is to 
monitor the change of tuning properties and adjust the 
corresponding parameters [19-20]. It helps us to understand 
more about dynamic neural activity. One essential problem 
here is that how to estimate the tuning curve and how to 
describe their time-variant characters. Since Georgopoulos 
first rises up the cosine curve with preferred direction [21], 
many different forms of tuning model have been proposed, 
from linear [2], Gaussian [8], Exponential [9] to an 
assumption-less linear-nonlinear-Poisson (LNP) model [22]. 
Unfortunately, an assumption-less model is too complicate to 
trace, while a simple one like linear or exponential may lose 
important information. To take a balance, we propose to 
approximate the tuning curve with a complex model, like two 
Gaussian kernels [23].  

In this paper, we extend a previous work on tracking time 
variant neuron tuning properties with an exponential-Gaussian 
complex tuning model, and update the parameters of Monte 
Carlo point process (MCPP) estimator during the decoding. 
Detail of the algorithm will be explained in section II, after a 
short review of LNP model. Decoding results both on 
simulated neural ensemble and in vivo BMI data,  using the 
Dual MCPP will be compared with the one estimated by static 
MCPP in section III, followed by the discussion. 

II. DATA COLLECTION AND METHODS 

A. Data collection 

The experiment paradigm was implemented in Qiushi 
Academy for Advanced Studies in Zhejiang University. A 
monkey was trained to move a joystick to follow a 
continuously moving visual target using left hand. A Utah 
array was chronically implanted in the hand area of the right 
primary motor cortex (M1). Multi-channel neural activities 
were recorded by a 128 channel Cerebus

TM
 data acquisition 

system (Blackrock Microsystems, USA) at the sample rate of 
30 kHz. Analogy waveforms of the action potential were 
amplified and band pass filtered from 250 Hz to 7.5 kHz. 
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About 91 neurons were detected and sorted in real time with 
the Cerebus

TM
 system. An optimum time interval of 10ms was 

selected to translate the spike trains into a sequence of 1 (spike) 
and 0 (no spike) as multi-channel point process observations. 
The corresponding position of the joystick was synchronously 
recorded at the sample rate of 20 Hz.  We collected both data 
for 1100s. 

B. Tuning curve estimation 

We selected the instantaneous LNP model [24] to estimate 
the nonlinear tuning curve of neurons without any further 
assumption. Suppose the multi-dimension kinematics are 

defined as  with 2-dimensional of position 

and velocity. As shown in Fig. 1, a linear filter first projects it 
into the one dimension, where the preferred direction  is 

estimated from the training set. A neuron can be seen as an 
inhomogeneous Poisson model. From the spike trains, we can 
estimate their instantaneous firing probability . Then the 

nonlinear tuning function  can be observed directly in the 2D 

plane. Unlike other tuning models like linear or exponential 
one, here places no assumption on the distribution of . 
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Figure 1.  Block diagram of linear-nonlinear-Poisson model [26] 

To reduce the number of parameter we need to update, 
here we try to approximate the tuning curve estimated by the 
LNP model with one exponential kernel plus one Gaussian 
function. Fitting result can be expressed as (1) 

  (1) 

where [ ] are the parameters of tuning function 

approximated by Levenberg-Marquardt algorithm. We would 
like to remark at this point that it is not the only option. We 
also tried two Gaussian or two exponential functions. In our 
data, one exponential kernel plus one Gaussian is more stable. 

C. Dual Monte Carlo Point Process 

Monte Carlo point process (MCPP) filter was proposed 
[10] to recursively estimate the probability density function 
from the discrete observation of the neural firing based on a 
Bayesian framework, with no constrains on the form of the 
posterior density. Suppose the kinematic variables at time 
index  is , and the state evolves according to a linear 

relation 

  (2) 

where  is estimated from training data by a least square 

solution , and  is a zero mean 

white noise with covariance . In the inhomogeneous Poisson 

process, the probability  of observing a spike  in the 

interval  is defined as 

  (3) 

where the instantaneous firing rate  is predicted from 

the tuning curve , which is estimated in section II.B. 

During the decoding, we estimate the prior probability  

from  according to (2), and then gain the instantaneous 

firing rate  from  by (1). Finally, the posterior 

density of  can be predicted towards (3). Unlike other point 

process estimator using Gaussian assumption, MCPP 
estimates the posterior density function in a nonparametric 
way by using the Monte Carlo sampling. More details please 
refer to [10]. 

In traditional MCPP, the parameters in tuning function (1) 
are fixed after training. In contrary, we will update these 
parameters along the time in Dual MCPP. Take the  of the 

neuron  for example 

  (4) 

where  is a transfer matrix, need to be estimated from the 

training data by least square .  is a 

zero mean white noise with covariance . Combining the (1), 

(3), (4) we can form a second MCPP and predict the tuning 
parameters recursively in the same way during the decoding 
process. 

III. RESULTS 

In this section, we present the performance tests of the 
proposed Dual MCPP and compare it with original MCPP in 
simulated and real scenarios for neuron decoding. 

A.  Simulation of Neuron Decoding 

To check the performance, we first compare the decoding 
result by these two methods in simulated neural data. The 
desire trajectory is collected from the real position recorded 
from the experiment. The  are all set to 0 and stay still in 

the whole simulation time,  starts from 5 and drop gradually 

with F is 0.99999 and  is 10
-7

. Two channels of neuron 

spike are drawn as a Bernoulli random variable with 
probability  within each 1ms time window. To 

control stochasticity, we generate 20 segments of data. The 
length of each segment is 700s. The first 100s are used for 
training, the others are used to decode. For each data, we set 5 
Monte Carlo trials. The number of particles generated in a 
Monte Carlo sampling is 1000. 
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Figure 2. Trajectory reconstruction example by MCPP and Dual MCPP in 
simulation for horizon position (above) and vertical position (below) 
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Fig.2 gives an example of trajectory construction by the 
MCPP and the Dual MCPP. The dash red line indicates the 
desire position in horizon (above) and vertical (below), the 
dash-dotted blue line indicates the estimation by MCPP and 
the solid black line indicates the estimation by Dual MCPP. 
We can see the blue line usually fails to reach these peaks, and 
the error seems to be enlarged as time passed. The normalized 
mean square error (NMSE) between the model prediction and 
the true signal are 0.2799 (horizon) and 0.3704 (vertical). In 
contrary, the black line performs better along the time, and the 
NMSE are 0.1926 (horizon) and 0.2630 (vertical), which are 
31.2% and 29% smaller respectively. 

0 100 200 300 400 500 600
2.5

3

3.5

4

4.5

5

5.5

parameter in horizon

p
a

ra
m

e
te

r 
in

 h
o

ri
z
o

n

 

 

0 100 200 300 400 500 600
2.5

3

3.5

4

4.5

5

5.5

t (s)

p
a

ra
m

e
te

r 
in

 v
e

rt
ic

a
l

desired tuning parameter

tuning parameter prediction by Dual MCPP

 

Figure 3. Estimation of tuning parameter by Dual MCPP in simulation 

Figure 3 clearly shows the change of tuning parameter in 
simulated data. The red dash line exhibits the desire tuning 
property of the generated  for two channels, the black solid 

line exhibits the estimation result by Dual MCPP. We can see 
the Dual MCPP precisely follow the change of these tuning 
parameters. With the tuning parameters updated in time, the 
Dual MCPP can produce a much closer prediction. 
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Figure 4. Average NMSE between the trajectory reconstruction and the real 
trajectory when tuning parameters changes in simulation 

To statistically compare the performances by MCPP and 
Dual MCPP, the average NMSE between the trajectory 
reconstruction and the desire signal of the 20 segments are 
evaluated. As shown in Fig. 4, the blue line is the average 
NMSE by MCPP, while the black line is the average NMSE 
by Dual MCPP. We can see that though the error of these 
methods both grow, the Dual MCPP consistently performs 
better than the MCPP. And the advantage seems to be 
enlarged as time progresses into testing. The NMSE starts at 

0.28% (horizon) and 3.19% (vertical) smaller at 10s, and the 
drops up to 15.49% and 20.69% smaller respectively after 
600s. Moreover, pairwise t-test is performed to see if the 
advantages are statistically significant. Right tail test 

NMSEMCPP > NMSEDual MCPP is carried out at  
significance level. The p-value, which means the probability 
of observing a sample against our hypothesis, is 0.3419 and 
2*10-7 respectively. 

B. In Vivo Neural Decoding for BMIs 

The neural signals recorded in vivo are more complicated 
to analysis, as the number of neurons is more, besides the 
neural tuning models and their time-varying properties are 
unknown. We applied the Dual MCPP on our in vivo 
recording, hoping to exact more information and compare 
with the original MCPP. 

We select 5 important neurons to analysis their tuning 
characterizes, which are significantly correlated to the 
movement in our mutual information analysis. Details of the 
analysis are described in [25]. The first 200s data are used to 
train the parameters of tuning model [ ] and 

time-varying parameters  and , which describe how the 

tuning model changed. To simplify the analysis, [ ] are 

all set to be still, only  will be updated along the time. The 

rest data are used to test the decoding performance. We set 20 
Monte Carlo trials to control the stochasticity. The number of 
particles generated in a Monte Carlo sampling is 1000. 

Figure 5 gives an example of trajectory reconstruction. 
The dash red line shows the desired trajectory in horizon 
(above) and vertical (below), the dash-dotted blue line 
indicates the estimation by MCPP and the solid black line 
indicates the estimation by Dual MCPP. We can see though 
both of these methods can follow the waves, the Dual MCPP 
produces a better estimation, especially around the peaks and 
valleys. The NMSE between the desired signal and the 
prediction by MCPP is 0.2379 in horizon and 0.2473 in 
vertical. This result drops to 0.2260 and 0.1413 for Dual 
MCPP, which is 5% and 42.96% smaller respectively. 
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Figure 5. Trajectory reconstruction example by MCPP and Dual MCPP in 
vivo BMI data for horizon position (above) and vertical position (below) 

Figure 6 clearly gives an example for the prediction of 
tuning curves (neuron 2). The dash-dotted blue line presents 
the original tuning curve estimated after training, which is 
used in the MCPP by the whole time. The dashed red line 
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presents the desire tuning curves through data analysis and the 
solid black line presents the tuning curves predicted by the 
Dual MCPP. We can see the black line is much closer to the 
desired signal than the blue one. As the time-varying neural 
behavior accumulates, the distance between the blue line and 
desired red one has been significantly enlarged from 48s to 
72s. This indicates that an adaptive decoding algorithm which 
can track the non-stationary neural tuning property is more 
promising to gain a steady good estimation. 
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Figure 6. Tuning curve prediction example of neuron 2 

IV. CONCLUSION AND DISCUSSION 

In this paper, we propose a Dual MCPP estimator to track 
the non-stationary neural tuning properties for Brain Machine 
Interfaces. The tuning functions are approximated by an 
exponential kernel plus a Gaussian one. With a less number of 
parameters need to be monitored, the time-varying feature of 
neurons can be captured and the model can be updated in time. 
When applied to the simulated data and in vivo recording, the 
Dual MCPP always receives a better reconstruction. Although 
a systematic comparison on longer data should be tested in the 
future. 

For methods using single neuron activities, the change of 
the number of neurons recorded usually block these method to 
be applied on data from days to days. For example, a different 
neuron may be detected by the same electrode on different 
days. With a totally different tuning function, it is hardly 
possible to make a close estimation. Take the multiple units 
activities may be a compromise choice. However, a flexible 
model which can select neurons automatically with a close 
tuning property should be discussed as an extra option. 

Besides, the tuning function is a statistical norm to 
describe the encoding property of a neuron, which is 
summarized from a long length of data. It not only produces a 
delay to update the model, but also loses some information 
during the averaging. Is there a quicker way to follow the 
instantaneous change of encoding habit shall be a future issue 
also. 
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