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Abstract— In order to enhance the usability of a motor
imagery-based brain-computer interface (BCI), it is highly
desirable to reduce the calibration time. Due to inter-subject
variability, typically a new subject has to undergo a 20-
30 minutes calibration session to collect sufficient data for
training a BCI model based on his/her brain patterns. This
paper proposes a new subject-to-subject adaptation algorithm
to reliably reduce the calibration time of a new subject to only
3-4 minutes. To reduce the calibration time, unlike several past
studies, the proposed algorithm does not require a large pool
of historic sessions. In the proposed algorithm, using only a
few trials from the new subject, first, the new subject’s data
is adapted to each available historic session separately. This
is done by a linear transformation minimizing the distribution
difference between the two groups of EEG data. Thereafter,
among the available historic sessions, the one matched the
most to the new subject’s adapted data is selected as the
calibration session. Consequently, the previously trained model
based on the selected historic session is entirely used for the
classification of the new subject’s data after adaptation. The
proposed algorithm is evaluated on a publicly available dataset
with 9 subjects. For each subject, the calibration session is
selected only from the calibration sessions of the eight other
subjects. The experimental results showed that our proposed
algorithm not only reduced the calibration time by 85%, but
also performed on average only 1.7% less accurate than the
subject-dependent calibration results.

I. INTRODUCTION

Brain-computer interface (BCI) provides a direct commu-
nication pathway between a human brain and an external
device [1]. Using appropriate sensors and data processing
algorithms, BCI maps patterns of brain activities associated
with a volitional thought onto signals for communication and
control [2], [3]. Such technology holds great promise as a
basis for assisting people with severe communication and
motor disabilities.

In majority of current BCI systems, the brain signals
are measured by electroencephalogram (EEG), due to its
low cost and high time resolution [4]. Since, the EEG
patterns considerably vary between subjects, a new subject
typically requires to undergo a 20-30 minutes calibration
session to collect sufficient labeled data for training a BCI
model based on his/her EEG patterns. This time-consuming
preparation step is especially inconvenient and fatiguing
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for patients, leaving reduced time for actual therapeutic
interaction. Therefore, it is highly desirable to substantially
reduce the calibration time using existing data from other
subjects, while the system is still accurate enough.

One of the first attempts to reduce the calibration time was
based on concatenating and clustering the historic spatial
filters of the same user [5]. The previous findings in [5]
were further confirmed in an online study published in [6].
In another study, it was shown that the calibration model
obtained by concatenating a large number of historic sessions
from the same patient can be reliably used in BCI-based
stroke rehabilitation [7]. Although the methods proposed in
[5], [6], [7] yielded promising results, they are not applicable
for a new BCI user with no previous data available. To
overcome this limitation, Fazli et al. proposed a method to
omit the calibration phase for new BCI users by an ensemble
of historic sessions [8]. However, the requirement of using
a large number of historic data from other subjects may still
limit the practicality of this method.

There are also some approaches to reduce the calibration
time using co-adaptive learning [9] or semi-supervised learn-
ing [10]. In these approaches, the BCI model is built first
using very few signals from the new subject, and then it is
adapted online using unsupervised or co-adaptive learning
algorithms. These approaches have initially limited perfor-
mances, becoming good only after a significant adaptation
time.

This paper aims at reducing the calibration time for
new BCI users while only a limited number of historic
sessions from other subjects are available. The new proposed
algorithm consists of two steps. In the first step, using a
few labeled trials from the new subject, the new subject’s
data is adapted to each available historic session separately.
This is done by the EEG data space adaptation (EEG-DSA)
algorithm [11], linearly transforming the new subject’s data
such that the distribution difference between the new data
and the considered historic session is minimized. Thereafter,
in the second step, the proposed decision making algorithm
decides which session among a few existing historic sessions
is the most suitable one to be used as the calibration session.
Consequently, the previously trained model based on the
selected historic session is entirely used for the classification
of the new subject’s upcoming data after adaptation.

The proposed algorithm is evaluated using a publicly
available dataset with 9 subjects. For each subject the cali-
bration session is selected from one of the 8 sessions from
the other subjects. In this study only 20 trials from the
new subject are used for EEG data space adaptation, and
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subsequently finding the best calibration session among the
available historic sessions. Thus, the calibration time can be
reduced from 20-30 minutes to 3-4 minutes.

II. METHOD

The new proposed algorithm consists of two steps. The
first step adapts the new subject’s data to each available
historic session individually. The second step selects the
historic session that is matched the most to its corresponding
adapted new data. Consequently, the trained model based on
the selected historic session is used to classify the upcoming
data from the new subject after adaptation. These steps are
described in detail in the next subsections.

A. Subject-to-Subject Adaptation

In this work, the set of the band-pass filtered EEG trials
from the kth existing historic session is denoted as D̄k =
{(x̄k,i, ȳk,i)}N̄i=1, where x̄k,i ∈ X̄k ⊂ Rn×s denotes the ith

single-trial EEG of kth historic session, and ȳk,i ∈ Ȳk ⊂ R
is the class label of the x̄k,i. n and s denote the number
of channels and samples respectively. In a same line, the
available labeled EEG trials from the new subject are denoted
as D= {(xi, yi)}Ni=1, where xi∈X ⊂ Rn×s, and yi∈Y ⊂ R.
In this study, we assume only 20 labeled trials (i.e. 10 trials
per class) from the new subject are available.

The dissimilarities between the kth historic session and
the new subject’s data yield different joint distributions.
However, changing the representation of X, while the rep-
resentation of Y is fixed, can change the joint distribution
of the new subject’s data. Thus, if a transformation function
can be computed to transform the new subject’s data, such
that the joint distributions of the new subject’s data and
the kth historic session become similar, the optimal model
that classifies the kth historic data will be still proper for
classifying the new subject’s data. For this purpose, a linear
transformation function is proposed as

hk = VT
k X, (1)

where Vk ∈Rn×n denotes the EEG-DSA transformation ma-
trix. The transformation matrix Vk should be computed such
that the distribution difference between the new subject’s data
and the kth historic data is reduced.

We assume that the differences between the new and the
historic data can be observed in the first two moments of the
single-trial EEG (i.e. mean and covariance) [12]. Following
this assumption, to simplify the problem, we only compare
the average distributions of the new subject’s data and the
kth historic data to compute Vk. We use the Kullback-
Leibler (KL) divergence between Gaussians to measure the
differences between the average distributions of two EEG
groups. Since the single-trial EEG is band-pass filtered, it
has zero mean value. Thus, the KL divergence between two
groups of band-pass filtered EEG data can be calculated as

KL[N0||N1] =
1

2
[tr(Σ−1Σ)− ln(

det(Σ)

det(Σ)
)− d], (2)

where Σ and Σ denote the average covariance matrices
of the two groups of the EEG trials; det and d denote
the determinant function and the dimensionality of the data
respectively.

Let N(0,Σk,j) be the average distribution of the EEG
trials belonging to the class j from the kth historic data.
The average distribution of the transformed EEG trials be-
longing to the class j from the new subject is estimated
as N(0,VT

kΣjVk), where Vk denotes the EEG-DSA trans-
formation matrix, and Σj is estimated using D. When the
class probabilities are balanced, using the KL divergence
the optimal Vk can be computed as the solution of the
minimization problem

L(Vk) = min
Vk

2∑
j=1

KL[N(0,VT
kΣjVk)||N(0,Σk,j)] =

min
Vk

2∑
j=1

1

2
[tr(Σk,j

−1VT
kΣjVk)−ln(

det(VT
kΣjVk)

det(Σk,j)
)−d].

(3)

To minimize (3), it is sufficient to calculate the first order
derivative of the loss function L(Vk) with respect to Vk, and
set it to zero;

dL

dVk
=

1

2

2∑
j=1

d

dVk
[tr(Σk,j

−1VT
kΣjVk)− ln(det(VT

kΣjVk))].

(4)
Setting (4) to zero results in (see [11] for details)

V∗k =
√

2((Σk,1
−1Σ1 + Σk,2

−1Σ2)†)0.5, (5)

where † denotes the pseudo inverse of the matrix that always
exists [13]. V∗k is the optimal linear transformation matrix
that transforms the EEG data of the new subject, such that
the distribution difference between the new data and the kth

historic data is minimized.

B. Selecting the Best Calibration Model

As described in the previous subsection, the dissimilarities
between the new subject’s data and each available historic
session is reduced using a separate EEG-DSA transformation
matrix. Nevertheless, the distribution dissimilarities between
the historic sessions and their corresponding transformed
(adapted) new data are still different. The transformed new
data may be more similar to some of the historic sessions
compared to the other ones. Thus, the second step of the
proposed algorithm is selecting the best historic session
among the available sessions as the calibration session for
the new subject’s data.

Fig. 1 illustrates how the proposed algorithm selects the
best historic session. The available new subject’s trials are
first adapted using the EEG-DSA transformation matrices,
and then classified using the models obtained by the corre-
sponding historic sessions. The historic session that yields
the highest classification accuracy is selected as the calibra-
tion session (i.e. the best historic session) for the data to be
collecting from the new subject. If more than one session
yield the highest classification accuracy, the one with the
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smallest KL divergence with the transformed new subject’s
data is selected as the calibration session. It is shown in (6))

k∗ :=arg min
k∈φ

2∑
j=1

KL[N(0,VT
kΣjVk)||N(0,Σk,j)], (6)

where φ denotes the set of historic sessions that yielded the
highest accuracy in classifying the new subject’s data after
adaptation.

Fig. 1. The second step of the proposed algorithm: selecting the best
historic session. Ses. indicates Historic Session, and n denotes the number
of available historic sessions.

III. EXPERIMENTS

In this study, EEG data from BCI competition IV, Dataset
IIa [14] were used. This data set contains EEG signals
recorded from 9 subjects (named A1, A2, ..., A9) using 22
electrodes per subject. During each experiment, the subject
was given visual cues that indicated four motor imageries
should be performed: left hand, right hand, feet and tongue.
Only the EEG signals corresponding to the right and left
motor imagery tasks were applied in the present study. A
training and a testing set recorded in different days were
available for each subject, and both sets contain 72 trials
for each class. In this study, each training set was used as a
possible calibration session for the other 8 subjects.

For each subject, signals from 0.5 to 2.5 seconds after the
cue were applied in this work (as done by the winner of BCI
competition IV, data set IIa). EEG signals were classically
filtered into 8 to 35 Hz frequency band using an elliptic filter.
In fact, this frequency band contains all the main frequencies
involved with the motor imagery. Thereafter log of variances
of the three first and the three last rows of the filtered signals,
obtained by common spatial patterns (CSP) were used as the
inputs of the LDA classifier.

IV. RESULTS AND DISCUSSION

In this study, only the first 20 trials of each test session
were used for adaptation and finding the best subject inde-
pendent calibration sessions. Subsequently, all the classifica-
tion results presented in this section were obtained using the
reminder of the test sessions.

A. Calibration Sessions Selected by Subject-to-Subject
Adaptation

Table I compares the performance of the proposed algo-
rithm against different calibration methods. The first row

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT CALIBRATION METHODS.
THE PROPOSED ALGORITHM WAS ABBREVIATED AS SI-CAL/ADAPT.

Data Set IIa, BCI Competition IV
Subject A1 A2 A3 A4 A5 A6 A7 A8 A9 Mean
SD-Cal 82.2 54 91.1 75 69.3 63.7 80.6 96.8 84.7 77.5

20-Test-Trial-Cal 83.0 50 93.5 46 63.7 52.4 75 96 88.7 72
All-Others-Cal 65.3 54 95.9 61.3 60.5 54.8 70.1 95.2 65.3 69.2

SI-Cal/NoAdapt 79.8 51.6 81.4 75 54.8 58.9 77.4 76.6 60.5 68.4
SI-Cal/Adapt 82.2 53.2 96.8 75 64.5 63.7 73.4 95.2 78.2 75.8

1SD: subject-dependent, Cal: calibration, SI: subject-independent, Adapt:
adaptation.

presents the classification results obtained by the subject-
dependent calibration sessions recorded previously. This
method is abbreviated as SD-Cal. The second row presents
the classification results when only the 20 trials recorded at
the beginning of the test session were used for calibration.
Since the 20 trials were recorded from the same subject in
the same session as the test trials, they were not affected
by subject-to-subject and session-to-session variations. How-
ever, since the number of trials is too few, they may not
lead to a proper model for classification of upcoming test
trials. Indeed, the results in the second row confirm this
issue. Compared to SD-Cal, calibration models obtained by
the 20 trials slightly improved the classification results of
the subjects A1, A3 and A9. This would be due to elimi-
nating the possible strong session-to-session non-stationarity
in these subjects. However, on average the SD-Cal method
yielded 5.5% higher classification accuracy (not statistically
significant p = 0.14). Particularly, the decrease in the
performance of the subjects A4 and A6 were substantial (i.e.
29% and 11.3% respectively).

In this study, three different subject-independent calibra-
tion models were evaluated. The results of these three models
are presented in the third, fourth and fifth rows of Table
I. In the third row, the calibration models were built by
concatenating all the available training sessions from the
other eight subjects. The results show that the calibration
models obtained by this method performed significantly
worse than SD-Cal by an average of 8.3% (p = 0.014).
In the fourth row, for each subject one of the available
training sessions from the other eight subjects was selected
as the subject-independent calibration session. To select the
subject-independent calibration session, the second step of
the proposed algorithm was applied. Thus, for each subject,
the first 20 trials of the test session were used to evaluated the
available calibration sessions from the other subjects. This
method was abbreviated as SI-Cal/NoAdapt since no adap-
tation was applied. The results on the fourth row of Table I
indicates that the SI-Cal/NoAdapt method performed worse
than all the methods discussed so far. Precisely, the SD-
Cal method significantly outperformed the SI-Cal/NoAdapt
method by an average of 9.1% (p = 0.014).

Finally, the last row of the table presents the classification
results obtained by the proposed algorithm abbreviated as
SI-Cal/Adap. The results show that the proposed algorithm
outperformed the calibration models obtained by the first 20
trials of the test session, concatenating the trials from the
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TABLE II
ADAPTATION USING SESSIONS FROM THE SAME SUBJECT AND OTHERS

Data Set IIa, BCI Competition IV
Subject A1 A2 A3 A4 A5 A6 A7 A8 A9 Mean

SD-Cal/Adapt 93.5 53.2 96.8 76.6 76.2 62.9 77.4 96 87.1 79.3
SI&SD-Cal/Adapt 93.5 53.2 96.8 76.6 76.2 63.7 77.4 97.2 87.1 79.4
2SD: subject-dependent, Cal: calibration, SI: subject-independent, Adapt:
adaptation.

other subjects, and the SI-Cal/NoAdap method by an average
of 3.8%, 6.6% and 7.4% respectively (p =0.33, 0.017, and
0.028 respectively). Importantly, the classification accuracies
obtained by the proposed SI-Cal/Adap algorithm were only
1.7% less accurate than the results of the SD-Cal method
(p = 0.23). The results suggest that using the proposed
SI-Cal/Adap algorithm, the BCI session can be accurately
and reliably started for a new subject just by collecting 3-4
minutes data.

B. Session-to-Session Adaptation for the Same Subject

In the previous subsection, we assumed that for each new
subject no previous sessions are available. Subsequently, we
looked for the best calibration session among the available
sessions from other subjects. In this subsection, we assume
that a session recorded on another day is available for each
subject. However, due to session-to-session variations the
model trained based on the previous session may not be
optimal. Indeed, the distribution difference between the test
and train sessions of the same subjects can be also reduced
using the EEG-DSA transformation matrix computed by
the first 20 trials of the new session. This algorithm is
abbreviated as SD-Cal/Adap, and its classification results are
presented in the first row of Table II. Comparing the first
rows of Table I and Table II shows that using the EEG-DSA
algorithm to adapt the new data to the subject-dependent
calibration session recorded on another day improved the
results by an average of 1.8% (although not statistically
significant p = 0.25) .

Now, the question arises of whether or not the results
can be further improved if the calibration session is selected
from a set of historic sessions including sessions from the
same and other subjects. To answer this question, for each
subject we changed the set of historic sessions from 8 to 9
by including the session from the same subject. This method
is abbreviated as SI&SD-Cal/Adapt, and its corresponding
results are presented in the second row of the Table II.
The results show that for 8 of the 9 subjects the selected
calibration session was that which was recorded from the
same subject. Subject A6 was the only exception. The
historic session from the first subject, A1, was selected in
this case yielding 0.8% higher classification results.

Considering the computation time and based on the very
small improvement in the classification accuracy, the SI&SD-
Cal/Adapt is not especially attractive. Overall, our results
suggest to apply the SD-Cal/Adap algorithm (i.e. session-
to-session adaptation) when a session recorded on another
day from the same subject is available. In case where no
historic session from the subject is available, the proposed SI-
Cal/Adapt could be reliably used to start the BCI application

with feedback as early as possible.

V. CONCLUSIONS
This paper proposed a new algorithm to substantially

reduce the calibration time for a new subject in motor-
imagery based-BCI applications. Using the EEG data space
adaptation algorithm, the new subject’s data is adapted to
each available historic session separately. Thereafter, the
historic session matched the most to the adapted new data
is chosen to be used as the calibration session for the new
subject. Unlike several past studies, the proposed algorithm
does no require a large pool of data from other subjects.
Importantly, it can be easily applied in online applications, as
computing the EEG-DSA transformation matrix and adapting
the new data to that can be done in less than a second.
Furthermore, the adapted new data are evaluated by a model
previously trained using the selected calibration session.
The experimental results showed that the proposed algo-
rithm performed only 1.7% less accurate than the subject-
dependent calibration method, while the calibration time was
substantially reduced to 3-4 minutes.
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