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Abstract— Traditional methods for early detection of
melanoma rely upon a dermatologist to visually assess a
skin lesion using the ABCDE (Asymmetry, Border irregu-
larity, Color variegation, Diameter, Evolution) criteria before
confirmation can be done through biopsy by a pathologist.
However, this visual assessment strategy taken by dermatol-
ogists is hampered by clinician subjectivity and suffers from
low sensitivity. Computer-aided diagnostic methods based on
dermatological photographs are being developed to aid in the
melanoma diagnosis process, but most of these methods rely
only on superficial, topographic features that can be limiting in
characterizing melanoma. In this work, a hybrid feature model
is introduced for characterizing skin lesions that combines
low-level and high-level features, and augments them with
a set of physiological features extracted from dermatological
photographs using a nearest-neighbor nonlinear model to
improve classification performance. The physiological features
extracted from the lesion for the proposed hybrid feature
model include those based on: i) eumelanin concentrations, ii)
pheomelanin concentrations, and iii) blood oxygen saturation.
The proposed hybrid feature model was evaluated on 206
dermatological photographs of skin lesions (119 confirmed
melanoma cases, 87 confirmed non-melanoma cases) using a
cross validation scheme. The experimental results show that the
proposed hybrid feature model, with integrated physiological
features, provided improved sensitivity, specificity, precision and
accuracy for the purpose of melanoma classification.

I. INTRODUCTION

Melanoma is the deadliest form of skin cancer [1] causing
65,000 global deaths in 2000 with 132,000 new cases occur-
ring globally each year with the incidence rate predicted to
only grow according to the World Health Organization [2].
If diagnosed early, simple extraction of the local cancerous
tissue results in a high five-year survival rate [3]; if not, then
the cancer can metastasize and prove fatal.

Dermatologists visually identify the pigmented lesion as
cancerous using conventional dermatological photography,
or photographs acquired using a specialized camera like a
DermaScope. The method most commonly used to identify
melanoma is for a dermatologist to assess them visually
against the ABCDE criteria. The ABCDE criteria builds upon
the ABCD criteria first introduced by Friendman et al. [4]
in 1985 describing the observable features of melanoma by
visual inspection, and was adopted quickly after introduction
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(a) Melanoma (b) Non-Melanoma

Fig. 1: Examples of pigmented skin lesion images that have
been diagnosed as (a) Melanoma and (b) Non-Melanoma.

due to its simplicity. The mnemonic ABCD represents asym-
metry (A), border irregularity (B), color variegation (C), and
diameter (D) greater than 6 mm. Using the evolution (E) of
the lesion over time as an observable indication of melanoma
was incorporated into the criteria in 2004 [5] to form the final
ABCDE criteria. Figure 1 shows example dermatological
photographs of a lesion diagnosed with melanoma and a
benign pigmented lesion. The ABCDE method, while being
very simple, looks only at superficial, topological features
and does not utilize more useful physiological biomarkers
that characterize melanocytic lesions. It has also been known
to suffer from clinician subjectivity leading to low sensitivity
and specificity in skin cancer diagnosis [6].

In the hope of eliminating clinician subjectivity, computer-
aided diagnosis methods are being developed to help im-
prove diagnostic sensitivity. The key challenge though is to
find the best set of features for characterizing melanoma.
Two main categories of features have been proposed in
previous literature: i) low-level features (LLFs), and high-
level intuitive features (HLIFs). LLFs are simple image-
related features that can be combined to provide a general
characterization of skin lesions that are related to skin cancer
diagnosis (e.g., asymmetry). For example, Cavalcanti and
Scharcanski combined 11 low-level features (e.g., solidity,
extent, circularity, equivalent diameter and axis length ratio)
to describe the lesion’s asymmetry [7]. These LLFs have
the benefit of not requiring significant design time, since
they are common application-agnostic features that are not
specific to skin cancer analysis. However, low-level feature
sets, due to their inherent high dimensionality, can suffer
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from the curse of dimensionality, increased computational
complexity, and possible over-fitting in sparse feature spaces
during classification [8].

HLIFs are features that have been carefully designed and
modelled to identify intuitive and semantically meaning-
ful characteristics that a dermatologist can interpret (e.g.,
ABCDE). Amelard et al. were able to show a higher sensi-
tivity in melanoma classification can be achieved via the use
of HLIFs. Furthermore, HLIFs, when combined with LLFs,
were shown to achieve a higher specificity and accuracy than
LLFs alone [8]. On their own, the specificity and accuracy
of the small feature set was low, however, it is shown that
HLIFs can utilize less data to adequately populate a feature
space and any suboptimal performance can be attributed to
lack of data.

Similar to how validation and confident diagnosis is per-
formed by pathologists by excising the lesion and checking
for the non-superficial features such as the existence of
cancerous cells and the level of spread, having feature
sets that rely on superficial, topological features alone for
computer-aided diagnosis of melanoma cannot be relied upon
for high sensitivity diagnosis. Cavalcanti and Scharcanski
have recognized this issue with existing feature models and
have recently paired their LLFs with physiological features
derived from dermatological photographs, which showed
improved sensitivity to melanoma [9]. Inspired, by this
approach of integrating physiological features with existing
feature sets, the main contribution of this work is the creation
of a hybrid feature model that combines LLFs and HLIFs,
and integrates an extended set of physiological features that
differ from those proposed by Cavalcanti and Scharcanski, to
improve diagnostic sensitivity for the purpose of computer-
aided melanoma diagnosis.

II. HYBRID FEATURE MODEL FOR MELANOMA
ANALYSIS

The proposed hybrid feature model for enhanced clas-
sification of malignant cancerous lesions consists of three
types of features: i) low-level features, ii) high-level features,
and iii) physiological features. A description of each type of
feature is provided below.

A. Low-Level Features

Using existing image processing techniques, numerous
features can be extracted and combined together to provide
an objective assessment of a skin lesion against the ABCD
criteria. LLFs are those that aim to do just that. In the
proposed hybrid model, the same feature extraction methods
presented in Cavalcanti and Scharcanski [10] was used to
extract 52 features from dermatological photographs:

• f1: Solidity: the ratio between the lesion area and its
convex hull area.

• f2: Extent: the ratio between the lesion area and its
bounding box area.

• f3: Equivalent diameter.
• f4: Circularity.
• f5: The ratio between the principal axes.

• f6: The ratio between sides of a bounding box contain-
ing the lesion.

• f7: The ratio between the lesion perimeter and its area.
• f8: The difference between the areas in the lesion that

are divided by the major axis divided by the lesion area.
• f9:The difference between the areas in the lesion that

are divided by the minor axis divided by the lesion area.
• f10: The ratio of the areas divided by the major axis.
• f11:The ratio of the areas divided by the minor axis.
• f12−14: The average gradient magnitude of the pixels

in the dilated lesion rim, in each one of the three color
channels.

• f15−17: The variance of the gradient magnitude of the
pixels in the dilated lesion rim, in each one of the three
color channels.

• f18−20: Dividing the lesion into 8 symmetric regions
and computing the average gradient magnitudes across
the dilated rim, in each of the three color channels.

• f21−23: Dividing the lesion into 8 symmetric regions
and computing variance of the gradient magnitudes
across the dilated rim, in each of the three color
channels.

• f24−27: Maximum, minimum, mean and variance of the
pixels intensities inside the lesion segment in the color
variation channel.

• f28−39: Maximum, minimum, mean and variance of the
pixels intensities inside the lesion segment in each of
the color channels.

• f40−42: Ratios between mean values of the three origi-
nal color channels.

• f43−48: A count of the pixels who match the six hues
typically associated with melanoma.

• f49−52: The maximum, minimum, mean and variance
of the pixels intensities inside the lesion segment to
represent the textural variation.

B. High-Level Intuitive Features

Utilizing higher level features that have been specifically
designed for the application of assessing a dermatological
photograph of a lesion against the ABCD criteria has proven
to improve classification sensitivity and also shown to pop-
ulate its feature space efficiently [8]. In the proposed model,
the four HLIFs with the most discriminating power presented
by Amelard et al. [11] are used:

• f1: Maximized color asymmetry score.
• f2: Structural asymmetry score.
• f3: The sum of the normalized differences of the lesion

with a morphologically closed border and of the lesion
with a morphologically opened border.

• f4: The normalized absolute difference of the border
and a low frequency representation of itself.

C. Physiological Features

Incorporating physiological information as features can
provide important clinical information. In order to design
appropriate physiological features, we turn to how melanoma
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forms. Cutaneous melanoma is characterized by the cancer-
ous growth of melanin-producing cells called melanocytes.
Melanocytes exist in the stratum basale of the epidermis.
In cutaneous anatomy, “melanin” commonly refers to the
subtypes eumelanin and pheomelanin, which contribute to an
individual’s skin color. Eumelanin is responsible for black-
brown pigmentation, whereas pheomelanin is responsible
for pink-red pigmentation. A higher overall melanin density
results in darker skin, since melanin’s molecular structure is
particularly well-suited to absorbing ultraviolet and visible
light [12]. Normally, the distribution of melanin is homo-
geneous over a small distance, resulting in uniform color.
Melanoma, on the other hand, can result in a heterogeneous
melanin density due to the local growth of melanosomes.
In addition, due to the large collection of cells that exist
in melanoma, angiogenesis occurs causing there to be a
massive uptake of oxygenated blood to the area [13]. Inspired
by this, we therefore turn to modeling not only eumelanin
and pheomelanin concentrations, but also blood oxygen
concentrations.

In the proposed hybrid model, we extend upon the nearest
neighbor modeling strategy proposed in [9] to estimate the
concentrations of eumelanin and pheomelanin, as well as the
blood oxygen saturation inside the lesion on a pixel-by-pixel
level (which is not done by [9]). Using a biophysical-based
spectral model for simulating light interacting with human
skin proposed by Krishnaswamy and Baranoski [14], we
learn an extended nearest neighbor inverse model and use it
to generate concentration maps for eumelanin, pheomelanin,
and blood oxygen from dermatological photographs. Based
on the generated concentration maps, the following physi-
ological features were integrated into the proposed hybrid
model:

• f1: mean eumelanin concentration inside the lesion.
• f2: mean pheomelanin concentration inside the lesion.
• f3: variance of eumelanin concentration inside the le-

sion.
• f4: variance of pheomelanin inside the lesion.
• f5: mean blood oxygen saturation inside the lesion.
An example of the resultant concentration maps generated

using the learned extended nearest neighbor inverse model
is shown in Figure 2.

III. RESULTS

A. Experimental Setup

We used a Bayesian classification scheme to assess the
class separability of each feature set. In the Bayesian classi-
fication approach, each class (melanoma and non-melanoma)
is modelled as a conditional multivariate normal distribution.
This classification scheme was chosen to emphasize the
robustness of the feature space rather than a particular
classifier.

We constructed a dataset of 206 clinical images (119
confirmed melanoma cases, 87 confirmed non-melanoma
cases) with dermatological photographs from DermIS [15]
and DermQuest [16]. For each dermatological photograph,

(a) Dermatological
photograph

(b) Eumelanin map (c) Pheomelanin map (d) Blood oxygen sat.
map

Fig. 2: The resultant concentration maps for eumelanin,
pheomelanin, and blood oxygen saturation extracted from
a dermatological photograph. Dark values represent a small
concentration/saturation and brighter values represent a large
concentration/saturation.

the following feature sets were extracted for forming the
hybrid feature model:

• SL: 52 LLFs [10].
• SH : four HLIFs [11].
• SP : five proposed physiological features.
We evaluated the following feature models (which com-

prise of different permutations of LLFs, HLIFs, and physio-
logical features) for comparison:

• SL = SL

• SLH = SL

⋃
SH

• SLP = SL

⋃
SP

• SLHP = SL

⋃
SH

⋃
SP

We evaluated each feature set S using a cross-validation
scheme. In particular, using the 206 images, 90% were
randomly chosen for training and 10% for testing. This was
repeated 50 times over each feature set with the arithmetic
average of the metrics recorded.

B. Classification Results

The recorded classification results between the different
feature sets are summarized in Table I. For each metric,
the corresponding feature set that attains the highest score
is boldface. SLH outperforms SL across all performance
metrics, consistent with [11]. SLP also outperforms SL,
indicating that incorporating physiological features adds dis-
criminative information on top of LLFs. The best classifica-
tion performance is attained by concatenating all the feature
sets together (SLHP ) to form a hybrid feature model. This
indicates that LLFs, HLIFs, and physiological features each
add unique information to the feature extraction stage. This
also indicates that the inclusion of physiological features in
SLP and SLHP improves the classification performance over
using just the topographic, superficial feature sets, SL and
SLH .
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TABLE I: Summary of classification results from the differ-
ent feature models.

Feature set Sensitivity Specificity Precision Accuracy
SL 84.95 70.69 80.93 79.00
SLP 85.96 75.47 83.62 81.76
SLH 85.94 72.07 81.45 80.10
SLHP 87.73 76.34 84.38 83.05

C. Physiological Features Choice

Cavalcanti and Scharcanski chose to augment LLFs with
physiological features representing the mean eumelanin and
pheomelanin concentrations in the lesion [9], SC . This
greatly improved their specificity relative to the proposed
LLFs, SL from Table I, but hindered their specificity and
precision. We chose to include the mean blood oxygen
saturation in addition to the mean and variance of eume-
lanin and pheomelanin concentrations into SP due to the
angiogenesis present in melanoma development [13]. The
result of including these additional physiological features to
the LFFs is improved performance across all metrics. This is
summarized in Table II with the highest scores in boldface.
This demonstrates that the inclusion of additional physiologi-
cal features introduced in the proposed hybrid feature model
has the potential to improve melanoma classification over
that proposed by Cavalcanti and Scharcanski [9].

TABLE II: Summary of classification results between Cav-
alcanti and Scharcanski [9](SC) and SLP .

Feature set Sensitivity Specificity Precision Accuracy
SC 81.60 71.23 81.06 77.71
SLP 84.02 72.40 81.97 79.62

IV. CONCLUSION

In this work, a hybrid feature model was presented for
characterizing skin lesions that combines low-level and
high-level features, and integrates a set of physiological
features based on eumelanin concentrations, pehomelanin
concentrations, and blood oxygen saturation extracted from
dermatological photographs to improve classification perfor-
mance. Experimental results show that the proposed feature
model provided improved classification performance when
compared to existing state-of-the-art methods. In the future,
the proposed feature model can be extended to look at
more complex physiological features that describe the normal
homeostasis occurring in human skin, or the divergence from
normal homeostasis that occurs in melanoma.
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