
Abstract— This paper presents a method to diagnose 

prostate cancer on multiparametric magnetic resonance 

imaging (Mp-MRI) using the shearlet transform. The objective 

is classification of benign and malignant regions on transverse 

relaxation time weighted (T2W), dynamic contrast enhanced 

(DCE), and apparent diffusion coefficient (ADC) images. 

Compared with conventional wavelet filters, shearlet has 

inherent directional sensitivity, which makes it suitable for 

characterizing small contours of cancer cells. By applying a 

multi-scale decomposition, the shearlet transform captures 

visual information provided by edges detected at different 

orientations and multiple scales in each region of interest 

(ROI) of the images. ROIs are represented by histograms of 

shearlet coefficients (HSC) and then used as features in 

Support Vector Machines (SVM) to classify ROIs as benign or 

malignant. Experimental results show that our method can 

recognize carcinoma in T2W, DCE, and ADC with overall 

sensitivity of 92%, 100%, and 89%, respectively. Hence, 

application of shearlet transform may further increase utility 

of Mp-MRI for prostate cancer diagnosis.  
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I. INTRODUCTION  

Aside from skin cancer, U.S. men are most frequently 
diagnosed with prostate cancer [1]. In 2014, an estimated 
233,000 men will be diagnosed with prostate cancer and 
29,480 will die from this disease [1]. Early diagnosis of this 
disease permits curative treatments. Undiagnosed prostate 
cancers are at high risk of spreading and metastasizing to 
other organs, particularly to the bone. Currently, there are no 
curative treatments available for metastatic prostate cancer 
[2]. Therefore, patient survival largely depends on early 
diagnosis.  

Prostate cancer is diagnosed by histopathological 
evaluation of tissue cores taken during prostate biopsies [3]. 
Pathological evaluation includes assessment of 
histopathologic Gleason grade [4] and stage [5] of the 
disease. Revised Gleason grading system includes three 

 

 

 

 

 

 

 

grades: Grades 3, 4, and 5. Gleason grade 3 cancer is 
considered low grade and non-aggressive. Gleason grades 4 
or 5 cancer is considered high grade, aggressive, and has 
potential for metastasis. Stage of the disease indicates the 
cancer's extent and how far it has spread from the prostate 
gland. Prostate biopsies are obtained under the guidance of 
transrectal ultrasound (TRUS) [3].  

TRUS biopsies are recommended for men with a serum 
prostate-specific antigen (PSA) level above 4 ng/mL or with 
an abnormal digital rectal exam (DRE) [6]. PSA cutoff value 
4ng/mL has limited sensitivity and specificity to indicate 
existence of aggressive tumors that are more likely to 
metastasize and lead to potentially lethal disease. Initial 
TRUS biopsies diagnose only 22-38% of prostate cancer and 
30-40% of aggressive tumors that require curative treatment 
may remain undiagnosed [7, 8].  

Some of these aggressive cancers remain undiagnosed 
because TRUS images show only the anatomical landmarks 
of the prostate gland, but not the individual cancer lesions. 
Therefore, TRUS biopsies are taken randomly without 
targeting any cancer lesion and hence prone to diagnostic 
errors. Diagnostic accuracy of TRUS biopsies can be 
improved by augmenting an imaging modality that can 
identify cancer lesions. The most promising strategy for 
imaging prostate cancer lesions is multiparametric magnetic 
resonance imaging (Mp-MRI) [9]. Mp-MRI includes 
anatomical sequences of conventional transverse relaxation 
time weighted (T2W) and longitudinal relaxation time 
weighted (T1W) imaging; functional sequences of dynamic 
contrast enhanced (DCE) and diffusion weighted (DW) 
imaging.  

Anatomical sequence T2W imaging provides the highest 
soft tissue resolution for visualization of tumors, the zonal 
anatomy, and prostatic capsule [10]. Sensitivity for 
visualization depends on the tumor location within the 
prostate zonal anatomy [11]. On T2W images, peripheral 
zone (PZ) appears normally high in signal intensity whereas 
central gland (CG) including central zone (CZ) and 
transitional zone (TZ) has lower signal intensity. CG is 
separated from PZ by a pseudocapsule and PZ is surrounded 
with a hypointense true capsule. About 70% of all prostate 
cancers are located in the PZ [11]. On T2W, PZ cancers are 
seen as round or ill-defined, low signal intensity foci. 
However, this pattern is nonspecific and can be seen in 
atrophy, prostatitis, benign prostatic hyperplasia, and 
hemorrhage as well. Prostate cancer in the CG is more 
difficult to detect since signal characteristics of CG are 
heterogeneous and usually overlap with those of the tumor. 
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Thus, T2W imaging has sensitivity and specificity for cancer 
detection in the range of 27-100% and 32-99%, respectively 
[10]. T1W imaging is of limited use since one cannot outline 
zonal anatomy or cancer lesions.  

Functional sequence DCE imaging is obtained using low-
molecular-weight gadolinium chelates as MRI contrast 
enhancement agent. On DCE imaging, tumors usually show 
early and rapid enhancement as well as early washout due to 
angiogenesis [10]. Higher wash-in and wash-out rates of 
DCE images enable detection of high Gleason grades and 
large tumors (≥ 1cc) whereas low volume (≥ 0.5 cc and <1 
cc) and low Gleason grade tumors may remain undetected. 
Thus, DCE imaging has a wide range of sensitivity and 
specificity values for cancer detection: Sensitivity and 
specificity are 46-96% and 74-96%, respectively [10]. 

 The other functional sequence DW imaging evaluates 
the Brownian motion of free water within tissues. DW 
imaging typically indicates tumors when there is a reduction 
in the diffusion of water. DW images are usually quantified 
by calculating the apparent diffusion coefficient (ADC). 
Tumors on ADC maps show decreased signal intensity 
relative to PZ. ADC values have been demonstrated to vary 
with histopathologic Gleason grade which is helpful in 
identifying aggressive prostate cancer [12]. Similar to other 
two sequences, DW imaging also has a wide range of 
sensitivity and specificity values for tumor detection: 
Sensitivity and specificity are 57-93% and 57-100%, 
respectively [10].  

Mp-MRI with magnetic field strengths of 1.5 or 3.0 Tesla 
can be carried out using either a body surface coil or an 
endorectal coil for diagnosis and local staging of prostate 
tumors. However, 3T endorectal coil Mp-MRI appears to be 
more accurate [13]. Interpretation of Mp-MRI data is labor 
intensive, expensive, and highly operator dependent. Post-
processing of these imaging sequences using various 
mathematical transformations can significantly reduce the 
cost and operator dependence while increasing the diagnostic 
utility [14].  

Texture analysis and classification has many applications 
including medical image processing for diagnoses of tissues 
with abnormality such as cancer. In a recent study, we 
applied the recently introduced shearlet transformation [15] 
to whole-mounted prostate images for classification of 
benign versus malignant tissues and histopathologic Gleason 
grading of cancer [16]. Compared to histopathological 
evaluation, shearlet transform based analysis achieved 100% 
sensitivity for benign versus malignant tissue classification 
and 89% accuracy in Gleason grading. We also applied 
shearlet transform to images of breast biopsy tissues for 
successful classification of benign versus malignant breast 
tissue [17].  

In this paper, we investigate shearlet transformation of 
T2W, DW, and DCE imaging sequences for features 
extraction and classification to significantly increase 
accuracy of prostate cancer detection on Mp-MRI. 
Compared with conventional wavelet filters such as Gabor 
filter, shearlet has inherent directional sensitivity, which 
makes it suitable for characterizing small contours of cancer 
cells. 

In Section II we present our shearlet transform based 
method for Mp-MRI representation, feature extraction, and 
classification. In Section III, experimental results are 
provided including sensitivity and specificity for prostate 
cancer detection on various Mp-MRI sequences. Conclusions 
are presented in Section IV. 

II. METHODOLOGY 

We propose to use the shearlet transform for representing 
the local structure of image textures. Shearlet is a new 
transformation that is designed to effectively capture 
directional features such as orientations of curves, edges and 
points in images. To better understand the shearlet 
transformation, we first describe the new generation of 
mathematical transforms. When convolved with an image, 
wavelet transform has better resolution in both space and 
frequency domains and can extract important texture features 
[18]. However, wavelet transform does not provide 
directional information and is not effective in extracting 
different types of texture features as in cancer tissues. The 
curvelet transform was introduced by Candes and Donoho 
[19]. Curvelets are representation systems that depend on 
three parameters: Parameters are scale, location, and 
direction. Discrete version of this representation cannot be 
directly implemented. Since curvelets are rotation-based, a 
rotation destroys the discrete lattice structures. Therefore, a 
directional representation system is required which deals 
with anisotropic features in both the continuous and discrete 
domains. To overcome these shortcomings, the shearlet 
transform was developed. By taking advantage of the 
classical theory of affine systems, shearlets provide an 
effective approach for combining geometry and multi-scale 
analysis.  

The continuous shearlet transform is defined as the 
mapping for      
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Hence, there are two distinct actions associated to each 

matrix    : Two actions are anisotropic dilation produced 

by the matrix   and a shearing produced by the non-

expansive matrix    . As a result, the shearlets form a 

collection of well-localized waveforms at various scales  , 

orientations   and locations  . 

Discrete shearlet transform is obtained by sampling the 

continuous shearlet transform     (     )on appropriate 
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parameters      . The continuous translation variable      
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for            . The discrete shearlets share the special 

ability to deal with multidimensional functions with their 

continuous counterpart. 

We use histogram of shearlet coefficients (HSC) [20] to 

have a compact representation of ROIs. However instead of 

choosing the number of orientations in shearlet transform as 

the number of bins for HSC, we choose a fixed number of 

bins. The shearlet coefficients of large magnitude come 

from edges [15]. Therefore the HSC method is based on the 

magnitude of shearlet coefficients at different scales and 

orientations. At each decomposition level, the HSC method 

estimates a histogram with a fixed number of bins and the 

entry at each bin is the shearlet coefficients within the 

certain range. Finally, the histograms computed for all 

levels are concatenated, resulting in a feature vector, which 

is used to describe the image. For this purpose we denote an 

image of size    as  ( )       
( )

  where         , 

          N are the pixel indices and              is the 

image index. We denote the discrete shearlet coefficients 

by    
(   )

 ∑     
( )
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(   )   where            and     

        are the shearlet domain coordinates and    
         is the decomposition level. The shearlet coefficient 

matrix is denoted using  (   )      
(   )

  for     

         ,             . Then we find the histogram of 

shearlet coefficients  (   )        (   )  where         
means the normal histogram of data. This procedure is 

depicted in Fig. 1. 

III.  EXPERIMENTS AND RESULTS 

A. Data 

Four patients were included in this study. They had pre-
surgery 3T endorectal coil Mp-MRI at the University of 
Colorado Hospital. T2W, DCE, and DW imaging sequences 
in DICOM file format were retrieved from our database. 
ADC maps were generated by fitting DW images. Our 
radiologist used Adobe Photoshop software to manually 
delineate prostate border and tumor boundaries on T2W, 
DCE and ADC maps. He used histopathological maps of 
prostates made by our pathologist to confirm and improve 
the accuracy of his interpretation. All image files were saved 
in TIFF format following classification by the radiologist. 
Original dimensions of T2W, DCE, and ADC maps in pixel 
counts were 512×512, 256×256, and 256×256, respectively. 
Following manual segmentation of the prostate border, 
dimensions of images were reduced to 180×140, 55×40, and 
70×55 for T2W, DCE, and ADC, respectively. Since the size 
of these images was inadequate to run shearlet transform, we 
increased the overall size to 320×240 pixels by upsampling 
each image using bicubic interpolation technique. In the 
bicubic interpolation, the output pixel value is a weighted 
average of pixels in the nearest 4-by-4 neighborhood. Next, 
we selected malignant and benign rectangular ROIs for 
classification. Minimum ROI image size of 78x78 pixels is 
required to apply shearlet transform.  

 

Fig. 1. Our proposed Shearlet based method for feature representation. 

B. Classification 

The inputs to our shearlet based method were the ROIs 
selected from ADC, DCE, and T2W images from four 
patients. For each patient, 10 benign ROIs and 10 malignant 
ROIs were selected from each one of ADC, DCE, and T2W 
images. We used the discrete shearlet transform toolbox to 
find the shearlet coefficients [15]. We used four 
decomposition levels and the shearlet coefficients at each 
decomposition level were determined. The histogram of 
shearlets with a fixed number of 60 bins returned the best 
classification rate. The histograms from each decomposition 
level were concatenated to form a single feature vector 
which was used for classification. Up to this point the, size 
of the feature vector was 1×885. The dimensionality of the 
features extracted from each ROI was large. Kernel principal 
component analysis (PCA) which is a nonlinear 
dimensionality reduction technique and an extension of PCA 
was used for feature reduction. Applying kernel PCA for 
feature reduction resulted in a feature size of 1×15 which 
contained 90% of total variance. Separate support vector 
machines (SVM) [21] with different kernels were trained 
based on the aforementioned features tested using half of the 
data for training and the other half for testing to classify 
ROIs as either containing malignant tumors or benign. 
Linear kernels returned the best classification results. SVM 
classification results are presented in the Table I. We pooled 
ROIs from all four patients to determine overall performance 
of shearlet based classification. Clearly, shearlet based 
classification can be used to accurately classify ROIs with 
prostate cancer. 

We have also extracted features from ROIs using Gabor 
filter [22] and Histogram of Oriented Gradients (HOG) [23] 
and compared the classification results with our proposed 
method. For Gabor filter we used 5 scales, 8 orientations, 
and a Gabor filter bank of size 10×10. Then we calculated 
the histogram of features extracted from Gabor filter using 
60 bins and used it in classification. For HOG, we used 3 
windows in each   and   direction and calculated the 
histogram of oriented gradients using 60 bins and used it for 
classification. The results are presented in Table I. Clearly, 
our proposed shearlet based method outperforms the other 
two methods. 
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TABLE I.    SVM CLASSIFICATION RESULTS FOR MP-MRI   

IV.  CONCLUSIONS  

We have developed a method to correctly interpret and 
diagnose prostate cancer on Mp-MRI using the shearlet 
transform. Experimental data obtained from four patients 
show that our approach can identify malignant regions on 
T2W, DCE, and ADC imaging sequences with a high degree 
of accuracy. Our results are better than previously published 
results for these same imaging sequences [10]. Our 
experiments show that our proposed method outperforms 
state of the art methods [22, 23]. The proposed shearlet 
transform based method can be automated to assist 
radiologists to identify prostate cancer lesions. Then, TRUS 
augmented with Mp-MRI can be used for image guided 
prostate biopsies for early and accurate diagnosis of this 
disease. This has the potential to significantly improve 
patient quality of life and also could affect mortality 
outcomes for men with intermediate to high-risk disease with 
earlier diagnosis.   

REFERENCES 

 

   [1]  R. Siegel, J. Ma, Z. Zou, and A. Jemal, "Cancer statistics, 2014," 

CA Cancer J. Clin., vol. 64, no. 1, pp. 9-29, Jan.2014. 

 [2]  C. G. Drake, P. Sharma, and W. Gerritsen, "Metastatic castration-
resistant prostate cancer: new therapies, novel combination 

strategies and implications for immunotherapy," Oncogene, 

Nov.2013. 
 [3]  K. K. Hodge, J. E. McNeal, M. K. Terris, and T. A. Stamey, 

"Random systematic versus directed ultrasound guided transrectal 

core biopsies of the prostate," J Urol., vol. 142, no. 1, pp. 71-74, 
July1989. 

 [4]  J. I. Epstein, "An update of the Gleason grading system," J. Urol., 

vol. 183, no. 2, pp. 433-440, Feb.2010. 
 [5]  F. L. Greene, D. L. Page, I. D. Fleming, A. Fritz, C. M. Balch, D. 

G. Haller, and M. Morrow, AJCC Cancer Staging Manual, 6th ed 

Springer, 2002. 

 [6]  H. B. Carter, P. C. Albertsen, M. J. Barry, R. Etzioni, S. J. 

Freedland, K. L. Greene, L. Holmberg, P. Kantoff, B. R. Konety, 
M. H. Murad, D. F. Penson, and A. L. Zietman, "Early Detection 

of Prostate Cancer: AUA Guideline," J. Urol., May2013. 

 [7]  P. N. Werahera, E. D. Crawford, F. G. La Rosa, K. C. Torkko, B. 
Schulte, H. T. Sullivan, A. van Bokhoven, M. S. Lucia, and F. J. 

Kim, "Anterior tumors of the prostate: diagnosis and significance," 

Can. J. Urol., vol. 20, no. 5, pp. 6897-6906, Oct.2013. 
 [8]  E. D. Crawford, D. Hirano, P. N. Werahera, M. S. Lucia, E. P. 

DeAntoni, F. Daneshgari, P. N. Brawn, V. O. Speights, J. S. 

Stewart, and G. J. Miller, "Computer modeling of prostate biopsy: 
tumor size and location--not clinical significance--determine 

cancer detection," J Urol., vol. 159, no. 4, pp. 1260-1264, 

Apr.1998. 
 [9]  J. Kurhanewicz, D. Vigneron, P. Carroll, and F. Coakley, 

"Multiparametric magnetic resonance imaging in prostate cancer: 

present and future," Curr. Opin. Urol., vol. 18, no. 1, pp. 71-77, 
Jan.2008. 

 [10]  B. Turkbey and P. L. Choyke, "Multiparametric MRI and prostate 

cancer diagnosis and risk stratification," Curr. Opin. Urol., vol. 22, 
no. 4, pp. 310-315, July2012. 

 [11]  J. McNeal, "Origin and development of carcinoma of the prostate," 

Cancer, vol. 23, p. 24, 1969. 
 [12]  Y. Peng, Y. Jiang, C. Yang, J. B. Brown, T. Antic, I. Sethi, C. 

Schmid-Tannwald, M. L. Giger, S. E. Eggener, and A. Oto, 

"Quantitative analysis of multiparametric prostate MR images: 
differentiation between prostate cancer and normal tissue and 

correlation with Gleason score--a computer-aided diagnosis 
development study," Radiology, vol. 267, no. 3, pp. 787-796, 

June2013. 

 [13]  S. Rais-Bahrami, B. Turkbey, K. B. Grant, P. A. Pinto, and P. L. 
Choyke, "Role of multiparametric magnetic resonance imaging in 

the diagnosis of prostate cancer," Curr. Urol. Rep., vol. 15, no. 3, 

p. 387, Mar.2014. 
 [14]  P. Tiwari, S. Viswanath, J. Kurhanewicz, A. Sridhar, and A. 

Madabhushi, "Multimodal wavelet embedding representation for 

data combination (MaWERiC): integrating magnetic resonance 
imaging and spectroscopy for prostate cancer detection," NMR 

Biomed., vol. 25, no. 4, pp. 607-619, Apr.2012. 

 [15]  G. Easley, D. Labate, and W. Q. Lim, "Sparse directional image 
representations using the discrete shearlet transform," Applied and 

Computational Harmonic Analysis, vol. 25, pp. 25-46, 2008. 

 [16]  H. Rezaeilouyeh, M. H. Mahoor, F. G. La Rosa, and J. J. Zhang, 
"Prostate Cancer Detection and Gleason Grading of Histological 

Images using Shearlet Transform," 47th Asilomar Conference on 

Signals, Systems and Computers, Nov.2013. 
 [17]  H. Rezaeilouyeh, M. H. Mahoor, S. M. Mavadati, and J. J. Zhang, 

"A microscopic image classification method using shearlet 

transform," IEEE International Conference on Healthcare 
Informatics (ICHI 2013), pp. 382-386, Sept.2013. 

 [18]  D. Flores-Tapia, N. Venugopal, G. Thomas, B. McCurdy, L. 

Ryner, and S. Pistorius, "Real-time MRI prostate segmentation 
based on wavelet multiscale products flow tracking," 2010 IEEE 

Annual International Conference of the Engineering in Medicine 

and Biology Society (EMBC), pp. 5034-5037, 2010. 
 [19]  E. Candes and D. Donoho, "A suprisingly effective nonadaptive 

representation for objects with edges," Vanderbilt University Press, 

2000, pp. 105-120. 

 [20]  W. R. Schwartz, R. D. da Silva, L. S. Davis, and H. Pedrini, "A 

novel features descriptor based on the shearlet transform," 18th 

International Conference on Image Processing (ICIP), pp. 1033-
1036, 2011. 

[21]   C. Cortes and V. N. Vapnik, "Support vector networks", Machine 

Learning, vol. 20, pp.273 -297, 1995. 
[22]   M. Haghighat, S. Zonouz, and M. Abdel-Mottaleb, "Identification 

Using Encrypted Biometrics," Computer Analysis of Images and 

Patterns, Springer Berlin Heidelberg, pp. 440-448, 2013. 
[23]      N. Dalal and B. Triggs, "Histograms of Oriented Gradients for 

Human Detection" Proc. IEEE Conf. Computer Vision and Pattern 

Recognition, pp. 886-893, 2005. 

 

Patient 

# 

Parameter Sensitivity Specificity Classification 

Rate 

1 ADC 100% 100% 100% 

 DCE 100% 100% 100% 

 T2W 60% 100% 80% 

2 ADC 100% 100% 100% 

 DCE 100% 100% 100% 

 T2W 80% 60% 70% 

3 ADC 100% 100% 100% 

 DCE 100% 100% 100% 

 T2W 100% 60% 80% 

4 ADC 80% 100% 90% 

 DCE 100% 100% 100% 

 T2W 100% 100% 100% 

Overall ADC 89% 100% 97% 

 DCE 100% 100% 100% 

 T2W 92% 83% 94% 

HOG ADC 90% 35% 63% 

 DCE 70% 80% 75% 

 T2W 80% 90% 85% 

Gabor ADC 70% 100% 85% 

 DCE 60% 75% 68% 

 T2W 65% 40% 53% 
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