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Abstract—Dynamic-contrast enhanced magnetic resonance 

imaging (DCE-MRI) is a useful noninvasive tool for monitoring 

tumor angiogenesis and assessing therapeutic response. One 

major problem that prevents an accurate estimation of 

pharmacokinetic parameters is partial-volume effect (PVE). A 

multi-tissue compartmental modeling (CM) technique 

supported by convex analysis of mixtures (CAM) is used to 

overcome the PVE by clustering pixels and constructing a 

simplex whose vertices are of a single compartment type. CAM 

uses the identified pure-volume pixels to estimate the kinetics of 

the tissues under investigation. This paper reports an enhanced 

version of CAM-CM to identify pure-volume pixels more 

accurately. This includes the consideration of the neighborhood 

effect on each pixel and the use of a barycentric coordinate 

system to identify more pure-volume pixels and to test those 

identified by CAM. The enhanced CAM achieved root mean 

square error (RMSE) of 0.00348 ± 0.000019, lower than the 

RMSE of 0.05409 ± 0.00496 achieved by CAM. 

I. INTRODUCTION 

Dynamic contrast-enhanced magnetic resonance imaging  
(DCE-MRI) is a noninvasive imaging tool for quantification 
of microvascular structure and function [1], with the goal of 
deriving some quantitative parameters that are related to the 
physiology of the region of interest and that are capable of 
describing the state of the microcirculation in that region [2], 
in an aid to monitor disease progress and assess treatment 
response [1], [3]. However, due to the discrete nature and 
finite bandwidth of image acquisition systems, a partial-
volume effect (PVE) problem occurs, which is the result of 
signals from two or more tissues combining together to 
produce a single image concentration value within a pixel [4], 
with the effect of inaccurate estimation to the values of the 
pharmacokinetic parameters [3]. 

A compartmental modeling technique based on convex 
analysis of mixtures (CAM) [5] has been proposed to 
mitigate the PVE problem, in which the kinetics in each pixel 
is expressed as a nonnegative mixture of the cofounding 
tissues (compartments). CAM clusters pixels into a finite set 
of groups distributed within a simplex, with the simplex 
corners (vertices) being occupied by pure-volume pixels 
(pixels of just one tissue type that are PVE-free). Then, CAM 
identifies these pure-volume pixels and estimates the kinetic 
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parameters values from these pixels, ignoring the pixels 
residing inside the simplex considering them as contaminated 
pixels with the PVE. The type of the simplex and hence the 
number of its vertices is determined based on the number of 
pure-volume compartments in the region under investigation 
(3 in our study representing the plasma input, fast flow, and 
slow flow). 

Deeper analysis of CAM performance showed that it does 
not determine all the pure-volume pixels, and roughly 
speaking, its performance goes in either direction of these 
two ones based on the level of noise in the images: 

 At low noise levels, CAM gets a smaller number of 
pixels- sometimes just one pixel- of each tissue type 
and defines them as pure-volume pixels. This means 
that there are many other pure-volume pixels defined 
as pixels with PVE. 

 At high noise levels, CAM gets a larger number of 
pixels- sometimes larger than the number of all the 
ground-truth pure-volume pixels- and defines them as 
pure-volume pixels. This means that a number of 
pixels with PVE are mistakenly defined as pure-
volume pixels, and also there  may be some missed 
pure-volume pixels. 

In this paper, two enhancements of CAM are proposed 
trying to get the more accurate number of pure-volume 
pixels. The first one is to compute the probabilistic 
memberships of each compartment at each pixel taking into 
account the neighborhood effect around that pixel. The 
second modification is to use the barycentric coordinate 
system (BCS) to get the contribution of each compartment 
for each pixel confined by the simplex convex hull. 

II. METHODS 

A main step of the CAM technique to reduce the impact 
of noise/outlier data points and the computational complexity 
is to apply a multivariate pixel clustering, based on the 
standard finite normal mixtures (SFNM) with estimating its 
parameters using the expectation-maximization (EM) 
algorithm, to cluster the normalized pixel time series into a 
set of clusters that could be represented by: 

𝑝 𝑋 𝑖  =  𝜋𝑚

𝐽

𝑚=1

𝑔 𝑋 𝑖  𝕒𝑚 ,Σ𝑋,𝑚 +  𝜋𝑚

𝑀

𝑚=𝐽+1

𝑔 𝑋 𝑖  𝜇𝑋,𝑚 , Σ𝑋,𝑚      (1) 

where the first term corresponds to the clusters of pure 
volume pixels (m = 1, … , J), the second term corresponds to 
the clusters of partial volume pixels ( m = J + 1, … , M), M is 
the total number of pixel clusters, 𝑋 𝑖  is the normalized 
concentration at pixel i, 𝜋𝑚  is the mixing factor, g(.) is the 
Gaussian kernel, 𝕒𝑚  is the mean vector of the mth pure tissue 
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compartment, 𝜇𝑋 ,𝑚  and Σ𝑋 ,𝑚  are the mean vector and 

covariance matrix of cluster m, respectively. 

A. Neighborhood Weighted SFNM 

The fact at our hand is that the tissue pixels have three 
classes (compartments) that are plasma input, fast flow, and 
slow flow. It was reported in [1] and [5] that the pixels of the 
fast flow class are found in the peripheral "rim" region of the 
tumor, and the slow flow class pixels are found in the inner 
"core" of the tumor. This could give an indication about the 
continuity (adjacency) of the pixels forming each class. But, 
due to PVE, concentration signals at some pixels may come 
from different compartments. Depending on a principle that 
the material is continuous, so it is natural to have the idea that 
the probability of the mth class of a pixel should be affected 
by the neighbors’ mth class probabilities [6]. This means that 
the current voxel’s mth class probability magnifies if the 
neighbors’ mth class probabilities tend to 1, and that it 
decreases if the neighbors’ mth class probabilities tend to 0. 

We use the EM algorithm to estimate the model 
parameters 𝜃 = {𝜋𝑚 , 𝜇𝑋 ,𝑚 , Σ𝑋 ,𝑚 ,∀𝑚} of (1). At each 

complete cycle of the algorithm, we start with an “old” set of 
parameter values 𝜃. We first use these parameters in the E-
step to evaluate the posterior probabilities 𝑧𝑖𝑚 , at each pixel i 
and for cluster m, using Bayes theorem. 

𝑧𝑖𝑚 =
𝜋𝑚𝑔 𝑋 𝑖  𝜇𝑋 ,𝑚 ,𝛴𝑋 ,𝑚 

 𝜋𝑚 ′𝑔 𝑋 𝑖  𝜇𝑋 ,𝑚 ′ ,𝛴𝑋 ,𝑚 ′  𝑀
𝑚 ′ =1

,𝑚 ∈  1,… ,𝑀      (2) 

Incorporating the principle of material continuity affects 
the posterior probability in (2) by introducing a new term (W) 
representing the neighborhood effect: 

𝑧𝑖𝑚 =
𝜋𝑚𝑊𝑖𝑚𝑔 𝑋 𝑖  𝜇𝑋 ,𝑚 ,𝛴𝑋 ,𝑚 

 𝜋𝑚 ′𝑊𝑖𝑚 ′𝑔 𝑋 𝑖  𝜇𝑋 ,𝑚 ′ ,𝛴𝑋 ,𝑚 ′  𝑀
𝑚 ′ =1

            (3) 

where 𝑊𝑖𝑚  is the neighborhood weight computed at pixel i 
for cluster m, and is governed by: 

𝑊𝑖𝑚 =
 𝑧𝑞𝑖𝑚

𝑄
𝑞=1

𝑄
                               (4) 

where Q is the number of pixels in a set of neighborhood of 
the ith pixel, and 𝑞𝑖  denotes the qth neighbor’s concentration 
value of the ith pixel. The neighbor pixels were selected to be 
of a window of size 3 x 3 with the current pixel in the 
window center at the window coordinate (2, 2).  

These posterior probabilities are then used in the M-step 
to obtain “new” values 𝜃 using the following re-estimation 
formulas: 

𝜋𝑚 =
1

𝑁
 𝑧𝑖𝑚

𝑁

𝑖=1

                               (5) 

𝜇𝑋 ,𝑚 =
 𝑧𝑖𝑚

𝑁
𝑖=1 𝑋 𝑖 

 𝑧𝑖𝑚
𝑁
𝑖=1

                          6  

Σ𝑋 ,𝑚 =
 𝑧𝑖𝑚

𝑁
𝑖=1  𝑋 𝑖 − 𝜇𝑋 ,𝑚  𝑋 𝑖 − 𝜇𝑋 ,𝑚 

𝑇

 𝑧𝑖𝑚
𝑁
𝑖=1

         (7) 

With this step, each pixel is represented by a group of 
cluster centers (m cluster centers), with m association values 

to these clusters. Then, CAM proceeds by isolating the pure-
volume clusters away from the partial-volume clusters 
through detecting the vertices (“corners”) of the convex hull 
that contains all the clusters. Each corner cluster represents 
the normalized time concentrations (TCs) of a single 
compartment, and these corner clusters represent the 𝕒 term 
in (1), where 𝕒 = {𝕒1 ,𝕒2 ,… ,𝕒𝐽 } and J is the total number of 

pure-volume compartments. 

After determining the pure-volume pixels, then CAM has 
the probabilistic pixel memberships associated with the pure-
volume compartments, 𝑧𝑖𝑗  for j = 1, … , J and i = 1, … , N. 

Plasma Concentration, 𝐶𝑝 , is associated with the cluster of 

the fastest enhancement (reaching its peak most rapidly); 𝐶𝑗  
(fast and slow flow concentrations) is associated with the 
cluster of jth tissue type. So, CAM computes 𝐶𝑝  and 𝐶𝑗  by: 

𝐶𝑝 =
 𝑧𝑖𝐽𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑖)𝑁

𝑖=1

 𝑧𝑖𝐽
𝑁
𝑖=1

,𝐶𝑗 =
 𝑧𝑖𝑗𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑑(𝑖)𝑁

𝑖=1

 𝑧𝑖𝑗
𝑁
𝑖=1

     (8) 

for j = 1, … , 𝐽 − 1, where 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑖) is the concentration 
at pixel i. 

B. Barycentric Coordinate System 

The clusters inside the convex hull – non-corner clusters- 
are considered of pixels with partial volume effect, where 
each pixel concentration value in these clusters is a mix of 
two or more of the pure-volume concentration values, and 
could be expressed through: 

𝑋 𝑘 =  𝛼𝑗 (𝑘)𝐶𝑗

𝐽

𝑗=1

                                         8 

where 𝑘 ∈ 𝐾 = {{1,2,… ,𝑁} ∖ 𝑃}, P is the set of pure-
volume pixels identified by CAM till this step, 𝛼𝑗  is the 

weight of the partial contribution of each pure-volume tissue 
𝐶𝑗 , and 

 𝛼𝑗 (𝑘) = 1

𝐽

𝑗=1

.                                          (9) 

In geometry, the barycentric coordinate system (BCS) is a 
coordinate system in which the location of a point in a 
simplex (triangle, tetrahedron, etc.) is specified as the center 
of mass of other masses placed at its vertices (corners). 
Relying on the simplex constructed by CAM, we can get the 
contribution of each corner (pure-volume pixels) at each 
partial-volume pixel inside the convex hull. The coefficients 
𝛼𝑗  are called the barycentric coordinate system of the CAM 

simplex. The barycentric coordinate is not unique, but if the 
coefficients are restricted by (9), it will be unique [7]. 

Here is a simple example of getting the BCS for a 
triangular simplex with each data point is a sample of the 
space ℝ2 in a Cartesian coordinate system (x, y). Suppose a 
point inside the simplex is 𝑃 = (𝑥, 𝑦), and the triangle 
vertices are 𝐶𝑖 =  𝑥𝑖 , 𝑦𝑖 , 𝑖 ∈ {1,2,3}, then 

𝑥 = 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3                          (10) 

𝑦 = 𝛼1𝑦1 + 𝛼2𝑦2 + 𝛼3𝑦3                                     (11) 

Substituting 𝑎3 = 1 − 𝛼1 + 𝛼2 in the above two equations, 
and rearrange: 

𝛼1 𝑥1 − 𝑥3 + 𝛼2 𝑥2 − 𝑥3 = 𝑥 − 𝑥3            (12) 
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𝛼1 𝑦1 − 𝑦3 + 𝛼2 𝑦2 − 𝑦3 = 𝑦 − 𝑦3             (13) 

This could be written in a more compact linear 
transformation as: 

𝐻.𝛼 = 𝑃 − 𝐶3                                   (14) 

where H is given by: 

𝐻 =  
 𝑥1 − 𝑥3  𝑥2 − 𝑥3 

 𝑦1 − 𝑦3  𝑦2 − 𝑦3 
                   (15) 

The matrix H is invertible since 𝐶1 − 𝐶3 𝑎𝑛𝑑 𝐶2 − 𝐶3 are 
linearly independent to form a triangle. So, 

 
𝛼1

𝛼2
 = 𝐻−1 𝑃 − 𝐶3                              (16) 

𝛼3 = 1 − 𝛼1 + 𝛼2                                (17) 

But for our case, where each data point is a sample of the 
space ℝ𝐿, where L is the total number of sampling time 
points, and is contaminated with some noise, the Alphas 
could be obtained by solving the optimization problem: 

𝛼  𝑘 = arg   𝐶𝑚𝑒𝑎𝑠𝑢𝑟 𝑒𝑑 (𝑘) − ℂ.𝛼 𝑘  2𝛼 𝑖 
𝑚𝑖𝑛            (18) 

s.t. 0 ≤ 𝛼𝑗 ≤ 1 and  𝛼𝑗 = 1𝐽
𝑗=1 , where 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (𝑘) is the 

concentration at pixel k, and ℂ = {𝐶1,… ,𝐶𝐽−1,𝐶𝑝} is the 

Time Activity Curves (TACs) of the tissue types estimated 
by the original CAM algorithm based on the pure-volume 
pixels on the convex hull vertices. 

The above technique is applied on all pixels (CAM-
identified pure-volume and partial-volume pixels). This could 
have a two-fold purpose. First, the estimated alphas, 𝛼  𝑘 , 
could point out the pure-volume pixels that CAM misses by 
extracting those pixels having very high contribution from 
one compartment and almost negligible contributions from 
the remaining compartments. By this, the CAM problem of 
underestimating the true number of pure-volume pixels could 
be solved, or at least enhanced if the BCS could not 
accurately determine the remaining pure-volume pixels. 
Second, the CAM-identified pure-volume pixels are tested to 
keep those strongly belonging to one compartment and 
discard the others. This could overcome the CAM 
overestimation problem.  

Then, TACs are recomputed via (8) using the pure-
volume pixels determined by CAM and the BCS. The CAM 
then proceeds and computes the pharmacokinetic parameters 

𝐾𝑗
𝑡𝑟𝑎𝑛𝑠 𝑎𝑛𝑑 𝑘𝑒𝑝 ,𝑗 , 𝑓𝑜𝑟 𝑗 = 1,… , 𝐽 − 1. 

III. RESULTS AND DISCUSSION 

To validate the proposed technique, a set of simulated 
DCE-MRI time series are synthesized by multiplying 
predefined local volume transfer constant maps 𝐾𝑡𝑟𝑎𝑛𝑠 (𝑖) by 
known compartment TCs (𝑘𝑒𝑝 ,𝑓 , 𝑘𝑒𝑝 ,𝑠 ,𝐶𝑝). Four different 

scenarios were obtained based on the different kinetic 
parameter values shown in Table I. The sampling rate was 
𝑡𝑙 = 0.5(𝑙 − 1), where l is the number of the sampling time 
points (18 points). A zero-mean Gaussian perturbation term 
and a zero-mean Gaussian noise were added to account for 
object variability and experimental noise, respectively. 
Results are repeated 10 times to check for accuracy (biasing) 
and reproducibility (variability). 

The results on the pharmacokinetic parameters values 
(not shown for space considerations) computed by the 
original CAM and by CAM with the neighborhood weighted 
SFNM enhancement (NWCAM) are that, out of 48 values (4 
parameters of 4 scenarios, each with 3 different noise levels), 
NWCAM outperformed in 26 cases, CAM outperformed in 
22 cases, from which 9 ones are within an error of 5 % 
relative to the CAM values. The  Root Mean Square Error 
(RMSE: mean ± variance) for  CAM is 0.05409 ± 0.00496 
and for NWCAM is 0.02926 ± 0.00187, which means that 
NWCAM is more accurate and more stable. 

As for the results (not shown) of CAM and CAM with the 
Barycentric Coordinate System (BCAM), out of 48 cases, 
BCAM outperformed CAM in all the cases. The RMSE for 
BCAM is 0.01689 ± 0.000819. 

After combining the two modifications of BCAM and 
NWCAM into BNWCAM, we obtained the results found in 
Table I. The RMSE for BNWCAM is 0.00348 ± 0.000019. 
The last RMSE value says that BNWCAM has the most 
accurate and stable values compared to CAM, NWCAM, and 
BCAM. In particular, the RMSE for the estimation of 𝐾𝑠

𝑡𝑟𝑎𝑛𝑠  
is 0.01748 ± 0.0004251 for CAM and 0.00069 ± 0.0000009 
for BNWCAM; of 𝑘𝑒𝑝 ,𝑠 is 0.06246 ± 0.0018024 for CAM 

and 0.00194 ± 0.0000009 for BNWCAM; of 𝐾𝑓
𝑡𝑟𝑎𝑛𝑠  is 

0.11802 ± 0.0004611 for CAM and 0.02949 ± 0.0000005 
for BNWCAM; and of 𝑘𝑒𝑝 ,𝑓  is 0.08421 ± 0.0088077 for 

CAM and 0.00662 ± 0.0000085 for BNWCAM. 

Fig. 1(a) is the ground truth for the TCs of scenario 2 with 
SNR = 15 dB. CAM produced the TCs shown in Fig. 1(b), 
while Fig. 1(c) shows those of BNWCAM. It could be seen 
that BNWCAM TCs are closer to the ground truth curves. 

 

Figure 1.  Time concentration curves (TCs) of scenario 2 with SNR = 15 

dB. (a) The ground truth TCs. (b) TCs after applying CAM. (c) TCs after 
applying BNWCAM. 

The ground truth numbers of pure volume pixels for the 
three compartments are 159, 99, and 315 pixels. Table II  
shows the number of pixels defined as pure-volume pixels 
after applying CAM and BNWCAM. These numbers indicate 
that BNWCAM has less variability in the number of pure-
volume pixels at looking at it either horizontally (the same 
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scenario with different noise levels) or vertically (the same 
tissue types, but with different kinetic parameter values), 
which means more robustness for determining the pure-
volume pixels and independency of noise and of kinetic 
parameters pattern. 

TABLE I.  KINETIC PARAMETER VALUES ESTIMATED BY CAM AND 

BNWCAM 

Ground 

Truth 

SNR = 10 SNR = 15 SNR = 20 

CAM BNWCAM CAM BNWCAM CAM BNWCAM 

S
c
e
n

a
r
io

 1
 

𝑲𝒔
𝒕𝒓𝒂𝒏𝒔 = 

0.03 

/min 

0.0321 0.0302 0.0291 0.0303 0.0281 0.0303 

𝒌𝒆𝒑,𝒔 = 

0.1 /min 
0.0934 0.0971 0.1571 0.1002 0.1593 0.1005 

𝑲𝒇
𝒕𝒓𝒂𝒏𝒔 = 

0.03 

/min 

0.0313 0.0299 0.0307 0.0303 0.03 0.0303 

𝒌𝒆𝒑,𝒇 = 

0.5 /min 
0.4626 0.4877 0.4866 0.5009 0.5002 0.5014 

S
c
e
n

a
r
io

 2
 

𝑲𝒔
𝒕𝒓𝒂𝒏𝒔 = 

0.03 

/min 

0.0288 0.0298 0.0337 0.0300 0.0292 0.0300 

𝒌𝒆𝒑,𝒔 = 

0.1 /min 
0.0972 0.0962 0.1966 0.0995 0.1849 0.0999 

𝑲𝒇
𝒕𝒓𝒂𝒏𝒔 = 

0.05 

/min 

0.0475 0.0498 0.0579 0.0500 0.0499 0.0499 

𝒌𝒆𝒑,𝒇 = 

1.2 /min 
1.1628 1.1886 1.2620 1.1988 1.1977 1.1976 

S
c
e
n

a
r
io

 3
 

𝑲𝒔
𝒕𝒓𝒂𝒏𝒔 = 

0.06 

/min 

0.0798 0.0621 0.1082 0.0610 0.0615 0.0600 

𝒌𝒆𝒑,𝒔 = 

0.5 /min 
0.6227 0.4978 0.5339 0.5023 0.5036 0.5008 

𝑲𝒇
𝒕𝒓𝒂𝒏𝒔 = 

0.05 

/min 

0.0713 0.0517 0.0923 0.0509 0.0512 0.0500 

𝒌𝒆𝒑,𝒇 = 

1.2 /min 
1.2470 1.19144 1.3294 1.2044 1.2075 1.2015 

S
c
e
n

a
r
io

 4
 

𝑲𝒔
𝒕𝒓𝒂𝒏𝒔 = 

0.05 

/min 

0.0494 0.0499 0.0760 0.0503 0.0658 0.0500 

𝒌𝒆𝒑,𝒔 = 

0.6 /min 
0.5156 0.5977 0.6026 0.5976 0.6099 0.6002 

𝑲𝒇
𝒕𝒓𝒂𝒏𝒔 = 

0.08 

/min 

0.0783 0.0796 0.1235 0.0806 0.1064 0.0800 

𝒌𝒆𝒑,𝒇 = 

1.5 /min 
1.2696 1.5118 1.5595 1.5005 1.5515 1.4997 

TABLE II.  STANDARD DEVIATION OF THE NUMBER OF PURE-VOLUME 

PIXELS ESTIMATED BY CAM AND BNWCAM 

 

SNR = 10 SNR = 15 SNR = 20 
  

CAM BNWCAM CAM BNWCAM CAM BNWCAM 
  

S1 317 573 858 577 956 576 344.14 2.08 

S2 317 573 925 573 955 574 360.00 0.57 

S3 500 580 444 579 549 573 52.53 3.78 

S4 469 519 342 576 577 573 117.62 32.07 

 
97.53 28.35 292.08 2.5 226.89 1.41 

  
 

In addition, the differences between the estimated pure-
volume pixels by CAM and BNWCAM in Table II shows the 
ability of the two reported enhancements to overcome, to a 
very satisfactory level, the two CAM problems of 

underestimating and overestimating the accurate number of 
pure-volume pixels, which has a direct reflection on the 
accuracy of parameters estimation as shown in Table I and as 
reported in the RMSE values. 

Also, the proposed technique was applied on typical 
breast DCE-MRI case. The TCs are shown in Fig. 2 for 
CAM, Fig. 2(a), and for BNWCAM, Fig. 2(b). As for the 
numbers of pure-volume pixels identified by CAM, they are 
15, 50, and 83 for the three tissue compartments; and they are 
57, 169, and 170 for BNWCAM. 

 

Figure 2.  TCs for a typical breast DCE-MRI case. (a) CAM. (b). 
BNWCAM. 

IV. CONCLUSION 

This paper provides an enhanced version of the CAM-
CM technique used to estimate the pharmacokinetic 
parameters in the DCE-MRI images based on isolating and 
determining the pure-volume pixels and ignoring the pixels 
with PVE. The enhancement comes in the use of barycentric 
coordinate system to test the pixels classified by CAM to get 
an accurate estimate of the pure-volume pixels, , after 
introducing the neighborhood effect around each pixel on that 
pixel. Results show more accuracy and robustness over the 
conventional CAM technique. 
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