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Abstract— Low signal-to-noise ratio has been a major prob-
lem in magnetic resonance spectroscopic imaging (MRSI). A
low-rank approximation based denoising method has been
recently proposed to address this problem by exploiting the
partial separability properties of MRSI data. However, field
inhomogeneity, an unavoidable complication in practice, can
violate the partial separability assumption and thus degrade
the denoising performance of the low-rank filtering method.
This paper presents a field-inhomogeneity-corrected low-rank
filtering method to achieve more robust denoising of practical
MRSI data. In vivo experiment results have been used to
demonstrate the effectiveness of the proposed method.

I. INTRODUCTION

The concentration levels of metabolites of the brain,
e.g., N-acetylaspartate (NAA), Choline (Cho) and Creatine
(Cr), provide important information about neuronal viability,
cellular membrane synthesis and energy production [1], [2],
[3]. Magnetic resonance spectroscopic imaging (MRSI) [4],
[5], [6] is so far the only non-invasive way to map the
concentrations of these metabolites, however, its potential
in clinical and research applications has not yet been fully
exploited. A key challenge of using MRSI in practice is
signal-to-noise ratio (SNR), which is fundamentally limited
by the sensitivity of nuclear magnetic resonance (NMR)
phenomena and the concentrations of brain metabolites.

A straightforward way to improve SNR is signal av-
eraging, which can be done temporally by repeating ex-
periments multiple times or spatially by applying smooth
filters. However, such methods compromise the already long
data acquisition time and the already low resolution of
MRSI. A better way is to do denoising using the underlying
properties of the signal. Many signal models have been
proposed for general denoising applications, including those
based on wavelet representations [7], PDEs [8] and sparsity
representations [9]. Most recently, the partial separability
(PS) model [10], which results in low-rank data, has been
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exploited for denoising in MRI [11], [12]. Especially, the
LORA (low-rank approximation) method has been proposed
to denoising MRSI data and reported superior performance
compared to the conventional methods [12].

However, non-negligible field inhomogeneity effects in
practical MRSI data can violate the PS assumption (i.e.,
resulting in significantly increased rank) and degrade the
denoising performance of LORA. In this paper, we propose a
field-inhomogeneity-corrected low-rank filtering approach to
address this issue. More specifically, the proposed method
first corrects the field inhomogeneity effects using a high-
resolution field map and prior edge information (derived
from high-resolution reference images) and then calculates a
low-rank approximation of the corrected data for denoising.
We demonstrate the effectiveness of the proposed method
using in vivo MRSI data acquired on a 3.0 T scanner.

The rest of the paper is organized as follows: Section II
briefly reviews LORA; Section III describes the proposed
method; Section IV presents representative denoising results
using in vivo experiment data, followed by the conclusion
of this paper in Section V.

II. BACKGROUND

In the absence of field inhomogeneity, the acquired (k,?)-
space data can be expressed as

s(k,1) = / p(r,1)e > Tdr + g (k, 1), (1)

where p(r,r) denotes the desired spatial-temporal function of
the metabolite signal, and €(k,#) is the measurement noise,
which is assumed to be a complex white Gaussian noise.

In LORA, p(r,?) is modeled by low-order PS functions
[10], [12]:

L
p(r,r) =Y a(r)wy(r), 2)
=1

where ¢;(r) is the [-th spatial basis function, y;() is the
corresponding temporal basis function, and L is the model
order. The validity of the PS model in (2) for MRSI data has
been discussed in [12].

It is well known that data satisfying the PS model has
a low-rank structure [10]. More specifically, suppose the
measured data are {s(kn,tm)}i\{;anl, where N and M denote
the number of spatial and spectral encodings, respectively.
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The corresponding Casorati matrix can be formed as:

s(ki,n) - s(ki,n) s(ky, i)
S(kz,ﬁ) S(kz,lz) S(kz,lM)
= : A G )
S(kN,ll) S(k}v,tz) S(kN,tM)

In the noiseless case, the PS model in Eq. (2) makes the rank
of the Casorati matrix in Eq. (3) upper-bounded by L [10],
[12], which can be much smaller than the dimension N and
M in practice.

In the noisy case, the Casorati matrix becomes full rank.
We then seek an optimal low-rank (rank L) approximation
of the Casorati matrix for denoising:

C*= argmin ||C—-C|3,

¢
st.  rank(C) =L, 4)
where || - ||r denotes the Frobenius norm.

The solution of (4) can be obtained by calculating the
singular value decomposition (SVD) of the Casorati matrix
C:

L
Cr = Z G[U[Vfl, (5)
=1

where 0;, u;, and v; are the [-th singular value, left and right
singular vector of C. Taking the discrete Fourier transform
(DFT) along each column of C* yields the denoised MRSI
reconstruction.

III. FIELD-INHOMOGENEITY-CORRECTED
LOW-RANK FILTERING

In practice, field inhomogeneity is caused by imperfec-
tions of the main magnetic field of an MRI scanner and
by inhomogeneous magnetic susceptibilities of tissues [13],
[14], [15]. In the presence of field inhomogeneity, the MRSI
signal becomes

sthot) = [ plr.pe 2 ™rdr + (ko) ©)

where P (r,t) contains an additional phase term caused by
field inhomogeneity:

p(r.1) = p(r,r)e 0, @)
Af(r) denotes field inhomogeneity in Hertz.

Since the phase term e 2%Af(") in (7) is not a separable
function, p(r,r) in (7) cannot be represented by PS functions
as p(r,t) in (2). Consequently, the corresponding Casorati
matrix of §(k,) in (6) does not have a low-rank structure in
the noiseless case. Therefore, the field inhomogeneity effects
should be removed before applying LORA for denoising.

A high-resolution field map can be easily acquired in
an MRSI experiment. If the MRSI data have the same
resolution, the field inhomogeneity correction can be easily
done by first performing DFT to the measured data to get
a high-resolution spatial-temporal data and then correcting
the field inhomogeneity induced phase accordingly. This
method is often known as the conjugate phase (CP) method

[16]. However, limited k-space data are often acquired in
the conventional MRSI methods due to experimental time
constraints. The challenge is to correct the field inhomo-
geneity effects with limited k-space data. For instance, the
CP method can suffer from the partial volume effects in the
case of limited k-space data.

In this paper, we use a different approach to correct the
field inhomogeneity effects with limited k-space data. We
aim to reconstruct a high-resolution MRSI data from limited
k-space data by incorporating edge information derived from
high resolution anatomical reference images. The CP method
is then used to correct the field inhomogeneity effects. The
corrected high-resolution data is truncated in k-space to
obtain low-resolution but filed-inhomogeneity-corrected data.
Finally, LORA is applied to the corrected data for denois-
ing. Note that the high-resolution MRSI reconstruction only
serves as an intermediate result. It has also been shown in
[17], [18] that incorporating edge information has additional
denoising effects on the MRSI data.

Mathematically, we perform field inhomogeneity correc-
tion by solving the following least-square problem with a
weighted ¢;-norm penalty [19]:

p. —argmin | QFBp —s[3 +4 [ Dp 3. (®)
p

In (8), Q is a k-space sampling operator, F is a DFT matrix,
B is a phase term caused by the field inhomogeneity, p is a
vector representing the discretized spatial-temporal function,
s is a vector representing the measured (k,#)-space data, A
is a regularization parameter, which can be selected using
the discrepancy principle, and the weighted ¢>-norm penalty
term is defined by

HDP ||%:ZZ Z Wnl.,nz‘pnl,nt_l)nz,n,F» (9)

ne nyp np€ly

where P, is the eight-pixel neighborhood of voxel n; and
Wn, n, 18 the weighting coefficient derived from high res-
olution reference images. Intuitively, the weights are intro-
duced to penalize spatial smoothness while preserving edges:
large weights in smooth regions yielding strong smoothness
penalties and small weights across edges yielding weak
smoothness penalties. For more details on how to determine
Wny i, se€ [17].

Equation (8) can be efficiently solved by solving the fol-
lowing normal equation using the conjugate gradient method:

(BUFHQHIQFB + ADMD)p, = BUFIQMs.  (10)
Field inhomogeneity corrected data is then obtained by

Y

The Casorati matrix can be formed accordingly and followed
by applying LORA for denoising.

sc = QFp,.

IV. RESULTS
A. In vivo experiments

Experimental data were acquired from a healthy volunteer
on a 3.0 T Siemens Trio scanner. The study was conducted
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in compliance with the regulations of the local institutional
board. A PRESS-CSI sequence was used to acquire MRSI
data with CHESS pulses for water suppression and eight
outer-volume-suppression bands for fat suppression (Fig.
1(a). The remaining imaging parameters were: TE = 130
ms, TR = 1000 ms, bandwidth = 2000 Hz, 20x20 encoding
matrix (elliptical sampling). A high resolution field map was
acquired using the scanner built-in field mapping sequence
with a 128x128 encoding matrix (Fig. 1(b). Two spin-
echo images were acquired with the same resolution with
130/1200 ms and 30/1200 ms TE/TR, respectively, which
served as reference anatomical images (Fig. 1(c) and 1(d).
In addition, a three-point Dixon method was used to acquire
water and fat images also at the same resolution.
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Fig. 1.
bands positions in the CSI experiment. (b) Field map. (c) and (d) Anatomical
reference images.

In vivo experiment setup. (a) Slice and outer-volume-saturation

B. Removal of nuisance signals

Although water and fat suppression can be quite effective
in a CSI sequence, residual water and fat signals are still
commonly found in the acquired MRSI data. These nui-
sance signals are of little interest but can be significantly
larger than metabolite signals even with suppression due
to the much higher concentrations of water and fat. The
nuisance signals must be removed before denoising using the
proposed method, otherwise the singular value distribution
of the resulting Casorati matrix will be dominated by the
contributions of the nuisance signals.

A HSVD based method was used to remove the residual
water signals in a point-by-point fashion [20]. A recently
proposed fat signal removal method was used to remove the

Fig. 2.

Field inhomogeneity correction results. (a) Weights in (9), which
were derived from Fig. 1(c) and 1(d). (b) Singular value distribution before
(solid black line) and after (dashed red line) field inhomogeneity correction.
(c) and (d) Representative spectra at two different locations before and after
field inhomogeneity correction.

residual fat signals, which was based on a spatial-spectral
model of fat signals [21].

C. Denoising results

Field inhomogeneity correction results are shown in Fig.
2. Fig. 2(a) shows the weights in (9), which were derived
from Fig. 1(c) and 1(d). Fig. 2(b) shows the singular value
distribution of the MRSI data (Casorati matrix) before (black
solid line) and after (red dashed line) field inhomogeneity
correction. It can be clearly seen that field inhomogeneity
correction made the singular values decay faster. In other
words, field inhomogeneity correction promoted the low-
rankness of the MRSI data as expected. Fig. 2(c) and 2(d)
show representative spectra at two different locations before
and after field inhomogeneity correction, respectively. Good
alignment of spectra are found after field inhomogeneity
correction. Comparing Fig. 2(d) with Fig. 2(c), noticeable
denoising effects are also seen, which are the expected results
of incorporating edge weights in (8).

Denoising results of the proposed method are shown in
Fig. 3. Fig. 3(a) and 3(b) show a representative spectrum
before and after denoising, respectively. The noise in the
original spectrum has been significantly reduced. Fig. 3(c)
and 3(d) show NAA maps before and after denoising. The
maps were calculated by integrating spectrum around the
NAA peak. After denoising, the ventricle structure (the center
dark region in Fig. 3(d)), where low NAA concentrations are
expected, can been better detected.

V. CONCLUSION

This paper presents a field-inhomogeneity-corrected low-
rank filtering method to improve SNR of MRSI data. High-
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Fig. 3. Denoising results. (a) and (b) A representative spectrum before and
after denoising. (c) and (d) NAA maps before and after denoising.

resolution field maps and a priori structural information from
high-resolution reference images are used to correct the field
inhomogeneity effects with limited k-space data. It promotes
the low-rank structure of MRSI data for the following LORA
denoising. In vivo experimental results have demonstrate
that the proposed method can denoise MRSI data with low
SNRs effectively. The proposed method may prove useful in
high-resolution MRSI, where the SNR issue is particularly
challenging.

REFERENCES

[1] R. A. de Graaf, In vivo NMR spectroscopy: Principles and
techniques, John Wiley & Sons, Ltd, second edition, 2007.

[2] P. B. Barker and D. D. M. Lin, “In vivo proton MR spec-
troscopy of the human brain,” Prog. Nuclear Magn. Reson.
Med., vol. 49, pp. 99-128, 2006.

[3] A. Henning, “In vivo 1H MRS applications,” Encyclopedia
of Spectroscopy and Spectrometry, J. C. Lindon, Ed., Amster-
dam, Netherlands: Elsevier, 2010, pp. 1077-1084.

[4] P. C. Lauterbur, D. M. Kramer, W. V. House, and C. N.
Chen, “Zeugmatographic high resolution nuclear magnetic
resonance spectroscopy: images of chemical inhomogeneity
within macroscopic objects,” J. Am. Chem. Soc., vol. 97, pp.
6866-6868, 1975.

[5] T. R. Brown, B. M. Kincaid, and K. Ugurbil, “NMR chemical
shift imaging in three dimensions,” Proc. Nat. Acad. Sci., vol.
79, pp. 3523-3526, 1982.

[6] A. A. Maudsley, S. K. Hilal, W. H. Perman, and H. E.
Simon,“Spatially resolved high resolution spectroscopy by
four-dimensional NMR,” J. Magn. Reson., vol. 51, pp. 147-
152, 1983.

[7]1 D. L. Donoho, “De-noising by soft-threshholding,” IEEE
Trans Inf. Theory, vol. 41, pp. 613-627, 1995.

(8]

(9]

[10]

(11]

[12]

[13]

(14]

(15]

[16]

(171

(18]

(19]

[20]

[21]

6425

A. Buades, B. Coll and J. M. Morel, “A review of image
denoising algorithms, with a new one,” Multiscale Model.
Simul., vol. 4, pp. 490-530, 2005.

M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Trans. Imag. Process., vol. 15, pp. 3736-3745, 2006.

Z.-P. Liang, “Spatiotemporal imaging with partially separable
functions,” Proc. IEEE Intl. Symposium Biomed. Imag., 2007,
pp. 988-991.

F. Lam, S. D. Babacan, J. P. Haldar, M. W. Weiner, N. Schuff,
and Z.-P. Liang, “Denoising diffusion-weighted magnitude
MR images using rank and edge constraints,” Magn. Reson.
Med., vol. 71, pp. 1272-1284, 2014.

H. M. Nguyen, X. Peng, M. N. Do and Z.-P. Liang, “Denois-
ing MR spectroscopic imaging data with low-rank approxi-
mations,” IEEE Trans. Biomedical Engineering, vol. 60, pp.
78-89, 2013.

A. Bashir and D. A. Yablonskiy, “Natural linewidth chemical
shift imaging (NL-CSI),” Magn. Reson. Med., vol. 56, pp. 7-
18, 2006.

I. Khalidov, D. Van De Ville, M. Jacob, F. Lazeyras, and
M. Unser, “BSLIM: Spectral localization by imaging with
explicit By field inhomogeneity compensation,” IEEE Trans.
Med. Imaging, vol. 26, pp. 990-1000, 2007.

M. E. Halse and P. T. Callaghan, “Imaged deconvolution:
a method for extracting high-resolution NMR spectra from
inhomogeneity fields,” J. Magn. Reson., vol.185, pp.130-137,
2007.

D. C. Noll, J. A. Fessler and B. P. Sutton, “Conjugate phase
MRI reconstruction with spatially variant sample density
correction,” IEEE Trans. Med. Imaging, vol 24, pp. 325-336,
2005.

J. P. Haldar, D. Hernando, S. K. Song and Z.-P. Liang,
“Anatomically constrained reconstruction from noisy data,”
Magn. Reson. Med., vol. 59, pp. 810-818, 2008.

H. M. Nguyen, J. P. Haldar, M. N. Do, and Z.-P. Liang,
“Denoising of MR spectroscopic imaging data with spatial-
spectral regularization,” Proc. IEEE Intl. Symposium Biomed.
Imag., 2010, pp. 720-723.

X. Peng, H. M. Hien, J. Haldar, D. Hernando, X.-P. Wang
and Z.-P. Liang, “Correction of field inhomogeneity effects
on limited k-space MRSI data using anatomical constraints,”
Proc. 32" Annual Intl. Meeting IEEE-EMBS, 2010, pp. 883-
886.

A. van den Boogaart, D. van Ormondt, W. W. F. Pijnappel,
R. de Beer R., and M. Ala-Korpela, “Removal of the water
resonance from 1H magnetic resonance spectra,” Mathematics
in Signal Processing III, J. G. McWhirter, Ed., Oxford:
Clarendon Press, 1994, pp. 175-195.

C. Ma, FE. Lam, C. Johnson and Z.-P. Liang, “Removal of
nuisance lipid signals from limited k-space data in 1H MRSI
of the brain,” Proc. Intl. Soc. Mag. Reson. Med., 2014, pp.
2887.



