
  

 
Fig. 1. Simplified block diagram of the AC-coupled CW mode 
portable radar sensor. 
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Abstract—In this article, we consider the design of a human 
gesture recognition system based on pattern recognition of 
signatures from a portable smart radar sensor. Powered by 
AAA batteries, the smart radar sensor operates in the 2.4 GHz 
industrial, scientific and medical (ISM) band. We analyzed the 
feature space using principle components and 
application-specific time and frequency domain features 
extracted from radar signals for two different sets of gestures.  
We illustrate that a nearest neighbor based classifier can 
achieve greater than 95% accuracy for multi class classification 
using 10 fold cross validation when features are extracted based 
on magnitude differences and Doppler shifts as compared to 
features extracted through orthogonal transformations.  The 
reported results illustrate the potential of intelligent radars 
integrated with a pattern recognition system for high accuracy 
smart home and health monitoring purposes.  

I. INTRODUCTION 

Research on human gesture classification for smart home 
applications using Wi-Fi [1] or radar signals [2] has been on 
the rise in recent years. On one hand, smart gesture 
recognition without requiring any tag attached to human 
body offers many advantages compared to contact-based 
solutions such as accelerometers, and thus is attractive for 
next generation elderly care (e.g., home utility control) and 
full body gaming. On the other hand, the radio-based 
approach is more robust than optic-based approaches 
because radio frequency (RF) signals can easily penetrate 
multiple indoor obstacles and is insensitive to ambient light. 

Some of the key requirements for smart home gesture 
recognition systems are that the hardware used to map the 
gestures to signals is relatively small and cost effective, and 
the software can produce highly accurate classification in 
real time. On the hardware side, majority of the reported 
noncontact RF gesture recognition systems either use 
expensive commercial transceiver modules such as the NI 
USRP, or rely on bulky bench top systems. On the algorithm 
side, robust gesture recognition algorithms that can reliably 
differentiate multiple gestures with subtle differences are 
highly desirable. 

In this article, we consider the design of a new system 
based on a cost-effective and lightweight smart radar sensor 
unit and a high accuracy gesture pattern recognition system, 
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which is based on time and frequency domain features 
extracted from the smart radar signals. A K-Nearest 
Neighbor classification approach is applied to process the 
radar-received data. Multiple experiments are performed to 
demonstrate the effectiveness of the proposed system.  

II. RADAR SYSTEM AND GESTURE RECOGNITION METHODS 

A. Portable Smart Radars 
A 2.4 GHz AC-coupled CW mode portable radar sensor 

is used to in this work to sense different gestures. Fig.1 
shows the simplified block diagram of this radar sensor. The 
radar sensor design adopts homodyne direct 
direct-conversion architecture [3]. The transmitter and 
receiver chains are implemented on the same board. As 
shown in the block diagram, the receiver chain consists of a 
low noise amplifier (LNA), a band pass filter, a gain block, a 
mixer and a baseband operational amplifier (OP). A 
voltage-controlled oscillator (VCO) and a balun form the 
transmitter chain of the radar sensor to generate a single-tone 
-3 dBm carrier signal at a frequency of 2.4 GHz and also 
provide a local oscillator (LO) signal for the mixer in the 
receiver chain. It should be noted that the transmitted power 
is more than 1000 times weaker than the peak power of a 
GSM cell phone, and is thus safe for practical applications. 

The received signal is first captured and amplified by the 
receiver chain, then down-converted to baseband. The 
baseband OP amplifies the I/Q signals. An NI-USB6009 
data acquisition module digitizes the baseband I/Q signals 
with 200-Hz sampling frequency and transmits them to a 
laptop through an USB port. 

In order to capture different gestures for this work, the 
radar sensor was placed on a table 1m above ground. A 
person sat in front of the radar and performed different 
gestures. Each gesture was repeated several times. The 
distance between the radar and the person was in the range 
of 2 meters. 
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B. Gesture Recognition System 
For classifying the diverse categories of motions based 

on acquired radar signals, we map our problem to a 
traditional pattern recognition framework consisting of the 
following steps: feature selection, classification and error 
estimation. Since radar I and Q signals are time domain 
signals with multiple variations (such as time shift or speed) 
for same category of gestures, treating the I and Q signals at 
each time instant as a feature is not advisable. Thus, we first 
considered feature extraction based on Principal Component 
Analysis (PCA) [4] that maps the signals into orthogonal 
components with highest variance.  

We also considered feature extraction based on capturing 
physical attributes such as relative direction and speed of 
motion during the duration of gesture. The details of these 
feature extractions are included in the Results section. The 
classifier used for all the pattern recognition analysis in this 
article was K-Nearest Neighbors [5] with k=3. In this 
supervised learning kNN model, each sample can be 
assigned to the class most common among its k nearest 
neighbors based on Euclidean distance between the feature 
vectors. We have normalized each feature individually 
before applying kNN. We didn’t try other classifiers since 
KNN with features extracted based on physical attributes 
was providing us a very high classification rate. The 
classification accuracy was calculated using 10 fold cross 
validation [6]. 

III. EXPERIMENTAL RESULTS 

A. Experiments with Basic Motions 
We initially sampled four familiar motions (no movement, 

shaking head, nodding and hand lifting) from the same 
person with 20 repetitions for each motion resulting in a 
sample set of 80 samples with four categories. Table 1 shows 
the classification accuracy for 11 different motion 
classification combinations. For instance, M2M4 denotes the 
classification problem of categorizing shake-head or 
hand-lifting movements. The second column denotes 3NN 
10-fold cross validation results using top 20 features 
extracted based on PCA. We observe that accuracy is highest 
(90%) for categorizing shaking head and nodding movements 
but average classification accuracy stays low at 64%. We also 
applied 3NN by changing the number of top features with 
similar results (results not included). These results seem to 
indicate that PCA may not be suitable to extract the most 
discriminative features from input radar signals. Accordingly, 
we considered involving physical features in our 
classification algorithm for the purpose of achieving a higher 
recognition rate. Since the relative distance between the radar 
and the user is related to the magnitudes of captured radar 
signals, we next consider the signal magnitudes in feature 
generation.  

Fig. 2 shows the radar hardware used for the experiment 
and the typical I/Q channel signals for the four considered 
movements. We extracted both the I and Q magnitude 
differences between the highest crest and the lowest trough of 
each signal. Subsequently, utilizing these two magnitude 
difference features, we trained our kNN model and the results 
illustrate that the 10-fold CV classification rates are 

significantly increased as shown in Table 1 (column 4 
denoted as MagDiff). The accuracy rates are all > 92% and 
100% for some of the classification combinations. Fig. 3 
illustrates the distinguishability among the four motions 
based on the magnitude difference of I and Q signals. Note 
that kNN using a combination of top 20 PCA features and 
Magnitude Difference features was also implemented as 
shown in column 3 of Table 1 where the performance 
actually dropped since the PCA features still remained 
significant in the model formation process.  

(a)     

    

(b)  

Fig. 2. (a) The radar used for experiment. (b) Sampled radar signals 
for four motions: no movement, shaking head, nodding and lifting 
hand (ordered from top to bottom). 

Fig. 3 shows that the four movements of shake head, head 
nod, hand lifting and no movement can be accurately 
classified by the simple classifier designed from only two 
magnitude difference features. However, if the user performs 
more complicated gestures, the accuracy of our recognition 
system will be limited. We next consider a set of experiments 
with complicated gestures. 

B. Experiments with three gestures 
In this experiment, we added hand pushing motion for 

comparison with hand lifting, here the user differs from the 
one in Fig. 2 and we have three categories composed of 20 
samples each. The gestures are shown in Fig. 4 and their 
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magnitude differences are shown in Fig. 5. The 
differentiability between shaking head and hand lifting is still 
quite distinct, but there are overlapping points between hand 
pushing and hand lifting. Consequently, besides the 
magnitude difference features (related to the relative distance 
from the radar), we further investigated the feasibility of 
extraction of orientation features. 

Table1. 10-fold cross validation classification rates among 
four sets of motions. M1: no movement, M2: shaking head, 
M3: nodding, M4: hand lifting. PCA represents features 
extracted from Principal Component Analysis while MagDiff 
denotes features based on Magnitude Differences. 

 PCA PCA + 
MagDiff MagDiff 

M1M2 70.0% 70.0% 100.0% 

M1M3 82.5% 82.5% 100.0% 

M1M4 55.0% 55.0% 100.0% 

M2M3 90.0% 90.0% 92.5% 

M2M4 55.0% 55.0% 100.0% 

M3M4 52.5% 52.5% 97.5% 

M1M2M3 71.7% 71.7% 93.3% 

M1M2M4 55.0% 56.7% 100.0% 

M1M3M4 56.7% 56.7% 98.3% 

M2M3M3 56.7% 56.7% 93.3% 

M1M2M3M4 57.5% 58.8% 96.3% 

 

 
Fig. 3. Plot of four common human motions in terms of magnitude 
differences between I and Q radar signals. 

 

Doppler shift [7] is the change in the observed frequency 
as the user moves relative to the radar receiver. For instance, 
when a user moves his hand towards the receiver, we see 
positive Doppler frequencies, and negative Doppler 
frequencies will show up when he pulls his hand backwards 
from the receiver. In order to see the micro-Doppler 
information of each gesture, Short-Time Fourier Transform 
(STFT) was applied to the output I/Q signals with a sliding 

window size of 2.56 second (512 samples) [8]. Hamming 
window was used in this work. Note that no extra filter was 
used to fully preserve all the motion information. Fig. 6 
demonstrates three kinds of Doppler spectrogram 
corresponding to the motions in Fig. 4 for three repetitions. 
The Doppler profiles show that each individual movement 
has similar Doppler shifts (similarity across each column), 
that are distinct from each other (differences among each 
row). 

 
Fig. 4. The three gestures used for experimental set B. Each row 
represents a gesture from left to right: Hand Pushing (top row), 
Hand Lifting (middle row), Head Shake (bottom row). The 
orientation of the radar was to the left for the first two rows and in 
front for the third row. 

 

We next present the feature extraction algorithm based 
on Doppler shift images similar to the ones shown in Fig. 6. 
Let P denote the pixel values in a Doppler shift image. The 
rationale and steps for feature extraction are as follows: 

• We observed in the Doppler shift images that the location 
of the brightest area changes across different gestures, 
while remaining stable for the same category of motion. 
Meanwhile, the light blue shape of the Doppler shift 
appears to change with each category of gesture. Thus, 
two Doppler pattern features can be generated based on 
the above observations. 

• Note that the highest energy in Fig. 6 concentrates around 
zero frequency, thus we set Pi,j= min(P) if Pi,j> 0.8max(P) 
to eliminate the high energy around zero frequency. 
Subsequently, an averaging window (here it is 7×7) was 
applied over each image to get the coordinates of the 
brightest area. Following that, we can obtain the height of 
this area (i.e. frequency corresponding to highest 
magnitude) to be used as an input feature. 

• In order to get the Doppler shape information, we divided 
each image to upper and lower parts separated by the zero 
frequency line. Before that, we set Pi,j = min(P) if Pi,j > 
0.6max(P) to get rid of high energy frequencies. Let AvgP 
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represents the averaged pixel values. If it is true that 
max(AvgPupper) > 0.3max(AvgP) and max(AvgPlower) > 
0.3max(AvgP), that means there exists light blue shapes, 
otherwise we define this kind of image as a representation 
of shaking head motion, giving the feature a numerical 
value of 0. For other kinds of motions, we denote Xupper 
and Xlower as the time coordinate of the brightest energy in 
upper and lower parts, respectively. If Xupper < Xlower, we 
consider that this image represents hand pushing, giving 
the feature a numerical value of 0.5. Otherwise, if 
Xupper >= Xlower, this corresponds to hand lifting and we 
provide the feature a numerical value of 1. 

Finally, we are capable of extracting two features 
(magnitude differences) from the time domain and two 
features (Doppler patterns) from the spectrogram. For the 
purpose of evaluating the performance of our recognition 
system based on these 4 features, we compared it with PCA 
and magnitude difference features on the same dataset. As 
shown in Table 2, our final recognition system has been 
substantially improved by adding Doppler features. It 
outperforms both PCA based kNN and magnitude difference 
based kNN and produces an average 10 fold cross validation 
classification rate of 98%. It should be noted that it is feasible 
to modify the technique for extracting the fourth feature 
(Doppler shape information) by adding further shape 
extraction approaches if more categories are being 
differentiated. 

 
Fig. 5. Plot of three common human movements in terms of 
magnitude differences of radar signals. 

IV. CONCLUSION 
The article presents a proof-of-concept gesture 

recognition system based on portable smart radar sensors 
that achieves high accuracy for differentiating different types 
of hand movement or different types of head movement. The 
results for differentiating hand lifting and hand pushing 
based on four features suggest that further complicated set of 
gestures can potentially be recognized if we utilize signals 
from multiple radars placed at different locations in the 
home environment. For future research, we will consider 
significantly higher number of gestures and optimal 
placement of radars to improve the robustness and accuracy 
of the recognition system along with detailed comparison 
with state of the art gesture recognition systems. 

 

 
Fig. 6. Frequency-time Doppler shift profiles of three common 
human motions for three samples.  Each column represents identical 
movement, motions are (from left to right): hand pushing and 
pulling, hand lifting and lowering, shaking head. 

 

Table 2. 10-fold cross validation classification rates among 
sets of three motions. M1: shaking head, M2: hand lifting, M3: 
hand pushing. PCA represents Principal Component 
Analysis, MagDiff denotes Magnitude Difference while 
Doppler denotes Doppler shift features. 

 PCA MagDiff MagDiff + Doppler 

M1M2 75.0% 100.0% 97.5% 

M1M3 50.0% 100.0% 100.0% 

M2M3 65.0% 77.5% 97.5% 

M1M2M3 51.7% 83.3% 96.7% 
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