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Abstract— It has been shown that the concentration of acetone 

in breath is correlated with the subject’s blood glucose level 

(BGL). Therefore, noninvasive BGL monitoring of diabetics can 

be achieved by the analysis of components in breath. In this 

paper, a breath analysis device with 10 gas sensors is designed to 

measure breath samples. Transient features are extracted from 

the signals of the sensors. Sequential forward selection is applied 

on the features to find the most informative ones. In order to 

reduce the interference brought by the inter-subject variance of 

breath acetone, global and local BGL prediction models are built 

and fused. The two models are based on different training 

strategies and have different advantages. Experiments were 

conducted using 203 breath samples from 36 diabetic subjects. 

Results show that the accuracy of the proposed feature is better 

than other similar features and the model fusion strategy is 

effective. The mean absolute error and mean relative absolute 

error of the system are 2.07 mmol/L and 20.69%, respectively. 

I. INTRODUCTION 

The frequent monitoring of blood glucose levels (BGLs) is 
important for diabetics. However, typical BGL measurement 
devices use automatic lancets to prick the fingertip for blood 
samples, which is invasive and painful. Noninvasive BGL 
monitoring approaches including reverse iontophoresis, 
bioimpedance spectroscopy, near infrared spectrophotometry, 
and so on [1] have been studied. They provide painless and 
convenient measurements, but still suffer disadvantages such 
as being sensitive to environmental variations, subjects’ skin 
conditions and movement [1]. 

Diabetics are patients whose body cells cannot absorb the 
glucose in blood properly. When their livers break down fat 
for energy, the ketone bodies in their blood will increase [2]. 
Acetone is one of the three kinds of ketone bodies. Since it is 
volatile, it can be detected in the exhaled breath. Lots of 
researchers have studied the relationship between breath 
acetone and BGL. They showed that the concentration of 
acetone in breath is correlated with BGLs [3][4]. As a result, 
the analysis of components in breath can be used as an 
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assistive noninvasive approach for BGL monitoring on both 
hyper- and hypoglycemic patients [3][4]. 

The measurement of components in breath is usually 
performed by gas chromatography combined with mass 
spectrometry (GC/MS). Recently, chemical sensor systems, 
also known as electronic noses (e-noses), are attracting more 
and more attention. Compared to GC/MS, they are cheaper, 
faster, more portable and easier to operate. With the 
development of gas sensor technology, their precision is 
becoming more and more satisfactory. They have been 
successfully applied in medicine for diagnosis of diabetes, 
renal disease, airway inflammation [5], and so on. 

In the last few years, some researchers have applied 
e-noses on BGL monitoring. Guo et al. proposed a breath 
analysis device with 12 metal oxide semiconductor (MOS) 
sensors. Principal components were extracted from the 
magnitude of the sensors’ signals. Support vector ordinal 
regression was used to classify 192 diabetics into 4 groups 
according to their BGLs [6]. An accuracy of 68% was 
achieved. The authors of [7] built up an e-nose to predict the 
BGL of 30 diabetics. The frequency differences and the first 
values of 6 sensors were adopted as inputs to a neural network 
(NN). The BGLs were obtained from the outputs of the NN, 
which had a mean relative absolute error of 25.24%. 

There are two problems in the previous studies. First, the 
features in both studies were not optimized. Features are 
computed from the sensors’ signals to extract information. 
Both studies explored only the magnitude of the sensors’ 
signals. In fact, transient features such as the derivative, 
integral and time feature of the signals may contain more 
meaningful information in gas sensors [8][9]. For example, 
the recovery time of a sensor is related to the type of the 
analyzed gas [9]. The dimension of transient features can be 
very high. Feature selection algorithms are often used to 
remove irrelevant and redundant features while keeping only 
the useful ones [9][10]. By properly selecting a subset of 
transient features, the computational complexity of the 
algorithm can be reduced while the accuracy can be improved. 

The other problem is caused by the inter-subject variance 
of breath acetone. As shown in [4], although breath acetone is 
correlated with BGL for each subject, its baseline values vary 
among subjects. The author of [2] concluded that calibration 
of acetone with BGL for each individual is required. However, 
global BGL prediction models for all subjects were built in 
previous studies [6][7]. This model development strategy 
should be improved for better prediction accuracy. 

In this paper, a breath analysis device (e-nose) with 10 gas 
sensors is designed to measure the breath of diabetics. 
Transient features are extracted from the sensors’ signals. 
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Sequential forward selection is adopted to select a subset of 
features which have high precision on BGL prediction. 
Experiment results show that the selected subset is more 
effective. Based on these features, two kinds of prediction 
models are proposed. The global model is trained using breath 
samples from all subjects with an additional feature to indicate 
the subject’s identity, while the local model only uses the 
samples from one subject as training samples. By fusing the 
two models in score level, the prediction accuracy is further 
enhanced. 

II. METHODS 

A. Breath Analysis System 

The framework of the proposed system is displayed in Fig. 
1. When collecting a breath sample, the subject is asked to 
exhale into a Tedlar gas bag. Then the breath gas is drawn 
from the gas bag into a gas room which contains an array of 
sensors. The signals of the sensors are captured by a signal 
processing circuit. They are filtered and amplified, then 
transmitted into a computer. The stored digitized breath 
sample includes response curves from the 10 sensors. 

The sensor array consists of a carbon dioxide sensor and 9 
MOS sensors sensitive to volatile organic compounds (VOCs) 
[11]. The VOC sensors were specially selected commercial 
sensors for the analysis of diabetics’ breath. They have 
different sensitive spectrums and measurement ranges so as to 
provide complementary information. Some of them are 
particularly sensitive to acetone. Three of the sensors are 
under temperature modulation, a technique that can enhance 
the discriminative power of MOS sensors [12]. A staircase 
modulation voltage [12] is applied to the three sensors. 

After a digitized breath sample is acquired, it undergoes a 
series of data analysis algorithms before the BGL estimation is 
got. In the preprocessing step, the baseline value in each 
sensor’s response is subtracted [5]. Transient features are then 
extracted and selected. The feature extraction and selection 
methods will be introduced in Section II.B and II.C, 
respectively. Finally, a global regression model and a local 
regression model are developed based on different training 
samples. The two models use different feature subsets which 
are selected separately. The outputs of the two models are 
fused to get the BGL prediction. Section II.D will describe the 
model development and fusion strategies. 

B. Transient Feature Extraction 

Fig. 2 illustrates a preprocessed sample from a diabetic 
subject. S1-S7 are sensors without temperature modulation 
(TM). Their response curves have three main stages. In the 
injection stage, the sensors are exposed to breath and their 
responses start to rise. In the reaction stage, the sensors are in 
full contact with breath and the responses reach their peak 
levels. In the purge stage, the gas room is purged with clean air 
and the responses gradually return to baseline. S8-S10 are 
sensors with TM. Their response curves oscillate in a staircase 
manner along with the modulated temperature.  

 

Figure 1.  The framework of the proposed breath analysis system. 
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Figure 2.  A preprocessed sample from a diabetic subject. 

For sensors both with and without TM, rich information 
about the type and concentration of the analyzed gas is in their 
transient features. Six kinds of transient features are explored 
in our experiments: magnitude, difference, derivative, 2

nd
 

order derivative, integral and time features. For each sensor 
without TM, 69 transient features are extracted from its 
response curve; for each sensor with TM, 208 features are 
extracted since the curve contains more shape information. 
Some examples of the transient features are: 

 Down-sampled magnitude; 

 Maximum and minimum derivative; 

 The time when the magnitude reaches 70%, 50% and 
30% of the maximum magnitude in the purge stage. 

C. Feature Selection 

After combining transient features from the 10 sensors into 
a feature vector, the dimension of the vector reaches 1107. 
This feature size is too high for regression algorithms to learn 
accurate models, especially when the training samples are not 
sufficient. We use sequential forward selection (SFS) to 
remove irrelevant or redundant features and keep only the 
useful ones. SFS is an algorithm with moderate computational 
complexity and relatively good accuracy [9][13]. It is a greedy 
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method. In the first step, one feature is selected which alone 
provides the best accuracy in the prediction task. In the next 
step, a new feature is selected if the combination of the 
previous selected subset and the new feature achieves the best 
accuracy. This step is repeated until all the features have been 
selected or the accuracy stops improving. This method treats 
the prediction algorithm as a black box, so the user can choose 
the most suitable algorithm. It is more favorable when the 
optimal feature subset is small. 

D. Prediction Model Development and Fusion 

Two different regression models are developed for BGL 
prediction. In the global model, samples from all subjects are 
included in the training set. This model can make use of the 
most training samples. However, the inter-subject variance of 
acetone concentration is not considered, so its accuracy will 
somehow be influence. To improve this model, we further add 
a categorical feature in each feature vector to indicate the 
subject’s identity. Concretely, for each test sample in the 
database, a regression model is trained using all the other 
samples. For each training sample, the additional categorical 
feature will be 1 if the training sample is from the same subject 
with the test sample, or be 0 otherwise. The test sample will 
also have the additional feature with the value 1. The 
advantage of this method is that all the training samples can 
contribute to the regression model while the training samples 
from the same subject with the test sample will be emphasized. 
Thus, the interference brought by the inter-subject variance 
can be reduced. 

On the other hand, the local model is trained using only the 
samples from the same subject with the test sample. This 
model is more subject-specific. The regression algorithm can 
learn the relationship between breath acetone and BGL of the 
subject more precisely. But when the samples collected for the 
subject is insufficient, the regression algorithm cannot get 
enough training samples, so the learned model will also be 
inaccurate. In that case, the accuracy of the global model may 
be better. Therefore, we use a simple fusion strategy to 
combine the two models. Suppose the output of the global and 

local model are 
g

y  and
l

y , respectively. Then the final BGL 

prediction y  can be expressed by (1), where 
g

w  is the weight 

for the global model. It can be decided by experiments. The 
support vector regression (SVR) [14] algorithm is used as the 
regression algorithm to predict BGL in both models, since it is 
not prone to over-fitting. 

(1 )
g g g l

y w y w y    

III. RESULTS AND DISCUSSION 

In this study, 203 breath samples were collected from 36 
volunteer patients in Guangdong Provincial Hospital of 
Traditional Chinese Medicine (Guangzhou, China). They are 
all Type 2 diabetes patients (17 males, 19 females; age 
57.7±9.1). For each subject, several breath samples were 
collected at 2h after meal in different days together with the 
simultaneous BGLs. The number of samples per subject 
ranges from 3 to 10. The relationship between breath acetone 
and BGL of 3 subjects is drawn in Fig. 3. It can be observed 

that the relationship between breath acetone and BGL varies 
among subjects. Besides, there is also intra-subject variance, 
which may be due to individual influential factors such as diet 
[15] and insulin [2]. The subjects were all receiving 1-3 kinds 
of treatments including oral medication, insulin injection, and 
insulin pump. None of the treatments is observed to correlate 
with both the BGL and the breath samples. 

 

Figure 3.  The relationship between breath acetone and BGL of 3 subjects. 

The y-axis is the maximum value of the preprocessed response of a sensor 

(S3) which has high sensitivity to acetone. 

The samples were randomly divided into 3 subsets. SFS 
was applied on two of them (selection set) to select features. In 
the procedure of feature selection, the leave-one-out 
cross-validation protocol was used to judge the performance 
of each feature combination. Then the selected features were 
adopted to build models for each sample in the remaining 
subset (test set) to predict the BGL of the sample. The mean 
average error (MAE) of all samples was computed after all 3 
subsets had been the test set once. 

When deciding the number of selected features in the 
models, we did not use the number when the MAE of the 
selection set is minimum. To prevent over-fitting on the 
selection set, only the first 3 features selected by SFS were 
adopted to build global and local prediction models. Then the 
outputs of the two models are fused using (1). The best 

accuracy comes when 0.6
g

w  , indicating that the two 

models make approximately equal contributions in the fused 
model. The MAE of our method is shown in Table I. MAE of 
several other features in global, local, and fused models are 
also listed in Table I for comparison. 

TABLE I.  MAE COMPARISON FOR DIFFERENT METHODS 

Method Global Local Fused 

Maximum magnitude 2.578 4.255 2.533 

Magnitude + PCA 2.324 3.070 2.275 

All transient features 4.239 2.349 2.346 

Transient features + PCA 2.321 2.352 2.195 

Transient features + SFS 2.262 2.332 2.072 

 

According to Table I, the selected subset of only 3 features 
outperforms the whole set of transient features. This is 
because the whole feature set has high dimensionality and 
many redundant and noise features, which interfered the 
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learning of accurate regression models. Another commonly 
used dimension reduction algorithm, PCA, was also tested in 
our experiments. When PCA was applied to transient features, 
the MAE was reduced, but still higher than transient features + 
SFS. This is because the principal components can preserve 
the largest variance in original features, but they are not 
necessarily good for regression. Using the same model 
development and fusion strategy, we also tested two other 
feature extraction algorithms, i.e. the maximum magnitude 
(MM) feature similar to [7] and the magnitude + PCA feature 
as in [6]. The accuracy of these features was not as high as 
ours. These results prove that among the transient features, 
some features are more effective than MM and PCA. 
Meanwhile, SFS has the ability to select them. 

The fusion of global and local models further improved 
the accuracy of the proposed method. This is probably 
because that the two models are somehow complementary. In 
fact, the fused model improved the performance of all the 
tested features. The final MAE, mean relative absolute error 
[7] and correlation coefficient of the proposed method are 
2.072, 20.69%, and 0.6982, respectively. The values of true 
and predicted BGLs are plotted in Fig. 4. 
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Figure 4.  Scatter plot of true and predicted BGLs. 

IV. CONCLUSION 

In this paper, a breath analysis device and several data 
analysis methods are proposed for blood glucose level (BGL) 
prediction of diabetics. To find informative features from the 
gas sensors’ signals, sequential forward selection is applied on 
transient features. In order to reduce the interference brought 
by the inter-subject variance of breath acetone, we propose to 
fuse global and local BGL prediction models. Experiment 
results have confirmed the effectiveness of these strategies. 
This paper illustrates the possibility of improving the accuracy 
of breath analysis systems according to the results in sensor 
and medical researches. This system has the potential to 
become a noninvasive and convenient tool to assist BGL 
monitoring. Its current accuracy is not quite high to fit the 
requirement of clinical use, though. Our future works will 
focus on methods to further enhance its performance. 
Intra-subject variance factors such as diet [15] and insulin [2] 
should be considered. More samples should be collected from 

each subject to develop better local models. The sequential 
forward selection algorithm may be trapped by local minima, 
so advanced feature selection algorithms should be 
investigated. 
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