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Abstract— Respiratory inductive plethysmography (RIP) has
been introduced as an alternative for measuring ventilation
by means of body surface displacement (diameter changes in
rib cage and abdomen). Using a posteriori calibration, it has
been shown that RIP may provide accurate measurements for
ventilatory tidal volume under exercise conditions. Methods
for a priori calibration would facilitate the application of
RIP. Currently, to the best knowledge of the authors, none
of the existing ambulant procedures for RIP calibration can be
used a priori for valid subsequent measurements of ventilatory
volume under exercise conditions. The purpose of this study
is to develop and validate a priori calibration algorithms for
ambulant application of RIP data recorded in running exercise.
We calculated Volume Motion Coefficients (VMCs) using seven
different models on resting data and compared the root mean
squared error (RMSE) of each model applied on running data.
Least squares approximation (LSQ) without offset of a two-
degree-of-freedom model achieved the lowest RMSE value.
In this work, we showed that a priori calibration of RIP
exercise data is possible using VMCs calculated from 5 min
resting phase where RIP and flowmeter measurements were
performed simultaneously. The results demonstrate that RIP
has the potential for usage in ambulant applications.

I. INTRODUCTION

Respiratory inductance plethysmography (RIP) has been
introduced as an alternative method for measuring ventilation
by means of body surface displacement [1]. The methodolog-
ical advantage of RIP is obvious as influences of the natural
breathing pattern induced by mouth pieces, nose clips or face
masks itself [2], [3] are avoided.

Breathing causes changes in the anterior posterior diame-
ters of the rib cage (RC) and abdomen (AB) [4], which can
be measured using RIP. The actual RIP device is most often
composed of two separate bands (RC and AB) either non-
embedded (Respitrace, Ambulatory Monitoring, Inc., White
Plains, N.Y., USA) [5] or embedded in a garment like the
LifeShirt (VivoMetrics, Ventura, CA, USA) (Fig. 1) [1].

RIP is commonly used in clinical settings but there is some
potential for ambulant applications as well. It has already
been shown that RIP may provide accurate measurements for
ventilatory timing and tidal volume under exercise conditions
[6]–[8]. Methods of metabolic performance assessment par-
tially utilize ventilation to quantify inter- and intra-individual
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Fig. 1. Subject wearing the LifeShirt garment (VivoMetrics, Ventura, CA,
USA) and the face mask of a flowmeter (Oxycon Pro Care Fusion, San
Diega, CA, USA)

variations of the aerobic working capacity [9]. These meth-
ods still require the use of restrictive laboratory equipment
that could be simplified by a well calibrated RIP device.

As soon as valid and accurate Volume Motion Coefficients
(VMCs) were applied to the uncalibrated RIP data, ventila-
tory volume was estimated reliable within ± 20% equiva-
lence after a posteriori calibration [6]. Analytical statistical
computations are claimed to be the most accurate calibration
[1], where VMCs are calculated a posteriori via least squares
regression [6], [10], [11].

Compared to a posteriori calibration, there are several
restrictions if RIP needs to be calibrated a priori for sub-
sequent measurements in an ambulatory setting. First, either
a spirometer or pneumotachograph is required to perform
quantitative gain scaling. Second, valid calibration of the
relation between VMCs is necessary [10], [12], as compart-
mental contribution between RC and AB changes as soon as
measured tidal volumes cannot be controlled.

Accurate determination of individual VMCs can either be
performed by inapplicable respiratory maneuver [3], [4] or
analytical statistical computation [6], [10], [11]. Currently,
to the best knowledge of the authors, none of the existing
ambulant procedures for RIP calibration can be used for
valid subsequent measurements of ventilatory volume under
exercise conditions.

The purpose of this study is to develop and validate a priori
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calibration algorithms for ambulant application of RIP data
recorded in running exercise. The calibration algorithms are
build on resting phases in upright standing posture (5min)
and are applied to exercise data.

II. METHODS

A. Hardware Equipment

RIP was measured with the LifeShirt garment (VivoMet-
rics, Ventura, CA, USA) (Fig. 1). Embedded in the LifeShirt
garment are two parallel elastic bands with insulated si-
nusoidal wires. One elastic band surrounds the rib cage
(RC) and one the abdomen (AB). We used the VivoSense
software (Vivonoetics, San Diego, CA, USA) for decryption
and processing of the recorded data. A flowmeter (FM)
(Oxycon Pro Care Fusion, San Diego, CA, USA) was used
as ground truth measurement device for ventilatory timing
and volume.

B. Subjects

186 healthy subjects (88 female and 98 male, age 27.1
± 8.3 years, height 175.6 ± 9.0 cm, weight 68.9 ± 11.1 kg,
mean ± standard deviation (SD)) participated in the study.
All subjects gave written informed consent and the study
was approved by the Ethics Committee of the University of
Freiburg, Re.-No. 208/11.

The experiments were performed on a treadmill
(Quasar, H/P/Cosmos Sports and Medical GmbH, Nussdorf-
Traunstein, Germany). The experiments started with a resting
phase in upright standing posture for 5min on the treadmill.
Afterwards, the subjects had to perform an incremental
running test on the treadmill. The starting speed was set to
6 km/h and was increased in steps of 2 km/h every 3min until
voluntary exhaustion. Afterwards, the subjects performed a
recovery phase of 10min in upright standing posture. In
between two different speeds, a resting phase of 30 s occurred
to collect blood lactate samples.

In this study, we only used the resting phase and the
running phase without pauses (referred to exercise phase in
the following). For the comparison of the different models
including calculation of our gold standard, we only used the
inspiratory tidal volume VT . Table I gives the ventilatory
characteristics of the resting and exercise phase used in the
creation and evaluation of the different calibration models.

C. Preprocessing

The synchronization of FM and RIP data was done using
a VBA routine in Microsoft Excel (Microsoft Office 2010,
Microsoft Corporation, Redmond, WA, USA). Further anal-
ysis was performed using the Matlab package (Mathworks
Inc., Natick, MA, USA).

D. Calibration Algorithms and Gold Standard

We used the two-degree-of-freedom model of Konno and
Mead [4] where it is assumed that the chest wall has two
moving parts (RC and AB). The inspiratory tidal volume VT
is then calculated as

VT = gainRC · uVTRC
+ gainAB · uVTAB

(1)

where gainRC,AB represents the volume motion coefficients
(VMCs) for the RC and AB band. uVTRC,AB

are the corre-
sponding uncalibrated values of partial tidal volume in each
band.

In the regression model, data from the resting phase
(uVTRC

and uVTAB
of RIP and VTFM

of the flowmeter data)
were used to determine individual gain factors gainRC/AB

for each subject. These individual gain factors were further
utilized for the a priori calibration of inspiratory tidal volume
from the exercise phase.

We used the following seven different models for deter-
mining the accurate gain factors from the resting phase:

1) Calculation of gainRC,AB of the two-degree-
of-freedom model (Eq. 1) using least-squares-
approximation (LSQ)

2) Calculation of gainRC,AB of the modified two-
degree-of-freedom model (Eq.2) using LSQ

VT = gainRC ·uVTRC
+gainAB ·uVTAB

+ coffset
(2)

with coffset as a constant in LSQ.
3) - 6)Calculation of gainRC,AB using Support Vector

Regression (SVR) [13], [14] with four different
kernels (linear, radial basis, sigmoid kernel, and
polynomial). The cost parameter c and ε in the
loss function of the SVR were determined in a
grid search using only the data of the resting
phase with five-fold-cross-validation with regard to
minimizing the root mean squared error (RMSE)
(see definition below). The parameters for c were
{0.1, 1, 10, 100, 1000} and for ε were {0.001, 0.01,
0.1, 1}.

7) Calculation of K (Eq. 3) and M (Eq. 4) using
the qualitative diagnosis calibration (QDC) model
of Sackner et al. [12]. After calculating K with
only resting data that lay within ±1.0 SD around
[uVTRC

+ uVTAB
], M is calculated using LSQ.

K = −SD(uVTAB
)

SD(uVTRC
)

(3)

with SD as standard deviation.

VT =M [K · uVTRC
+ uVTAB

] (4)

As gold standard model, we calculated the two gain
factors directly from the exercise data using LSQ without
offset [6], [10]. This gold standard requires the simultaneous
measurement of FM and RIP.

E. Performance Measure

We calculated the root mean squared error (RMSE) for
multiple linear regression [15]

RMSE =

√∑N
i=1(VT,i − VTFM ,i)2

N − n
(5)

with VTFM
as the reference volume of the FM, N as the

total number of breaths, and n as the number of coefficients
in the model (n = 2 for model 1, n = 3 for models 2 - 6,
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TABLE I
VENILATORY CHARACTERISTICS USED IN THE CREATION (RESTING PHASE) AND EVALUATION (EXERCISE PHASE) OF THE CALIBRATION MODELS.

Resting phase Exercise phase
Mean ± SD Min Max Mean ± SD Min Max

Number of breaths 93 ± 22 34 149 545 ± 147 189 931
Total time∗ [min] 5.9 ± 0.2 4.3 6.2 16.5 ± 3.2 7.4 25.3
Inspiratory time [min] 2.6 ± 0.3 1.6 3.7 7.9 ± 1.6 3.6 12.1

SD: standard deviation, ∗The total time consisted of the inspiratory and the expiratory time.

Gold standard LSQ without offset LSQ with offset SVR (linear) SVR (RBF) SVR (sigmoid) SVR (polynomial) QDC
0

0.5

1

1.5

2

2.5

3

3.5

R
M

S
E

 [
l]

1) 2) 3) 4) 5) 6) 7)

Fig. 2. RMSE of the seven models (1 - 7) and the gold standard. LSQ: least squares approximation; SVR: support vector regression; RBF: radial basis
function; QDC: qualitative diagnostic calibration.

and n = 1 for model 7). In regression, we seek for a perfect
fit (small residuals VT − VTFM

).

F. Statistics

We used a multivariate Analysis of Variance (ANOVA)
with repeated measures [16] followed by post-hoc t-tests with
Bonferroni correction to test if the means of the seven models
were different from the mean of the gold standard. An α level
of 0.05 was used throughout the study.

III. RESULTS

Table II shows the final cost parameters c and ε found in
the grid search for each kernel. We excluded all parameter
combinations where no SVR-model was found. We had to
exclude 13 subjects, as at maximum only 19.3% of breaths
of these subjects of the resting phase lay in the area of ±1
SD around the mean and appropriate calibration was not
satisfactory. We further did not include the QDC method
in the multivariate ANOVA and in the post-hoc procedure.

Fig. 2 displays the RMSE of the seven different calibration
models applied on the exercise data including the gold
standard approach. The multivariate ANOVA revealed signif-
icant differences between the six calibration models (without
QDC method) compared to the gold standard (F (6, 180) =
54.67, p > 0.001). Every t-test revealed significant differ-
ences.

IV. DISCUSSION

In this work, we aimed for an a priori calibration of
exercise RIP data. We used the resting data of each subject
to calculate individual gain factors using seven different
models. These models were compared with the gold stan-
dard calibration using multivariate ANOVA with repeated

TABLE II
SUPPORT VECTOR REGRESSION (SVR) PARAMETERS c AND ε

OBTAINED USING A GRID SEARCH.

Kernel type c ε
Linear 10 0.01
Radial basis 0.1 0.01
Sigmoid 0.1 0.001
Polynomial 0.1 0.01

measures and a post-hoc procedure. The gold standard cali-
bration demonstrated the best possible outcome of the LSQ-
calibration, but required the simultaneous measurement of
FM and RIP data, which is not available in an ambulant
setting.

The multivariate ANOVA and the post-hoc procedure of
multiple dependent t-tests revealed that all means differ
significantly. This implies that the performance of the six
models are different and one calibration model performed
best. The best calibration model was LSQ without offset,
followed by SVR with linear kernel and LSQ with offset
(Fig. 2). The LSQ without offset model is widely used in
literature, also known as MLR (multiple linear regression),
and accurate results have been achieved [6], [10]. Conse-
quently, we used the LSQ without offset calibration model
for determining the gold standard values. This model might
possibly be improved by solving Eq. 1 using least absolute
deviations or Lp-norms with p > 2 instead of least squares
approximation (LSQ).

Liu et al. [11] modified the standard LSQ approach from
Eq. 1 with volume, frequency, and body size features calcu-
lated over 20 s to 60 s-windows. They concluded that their
approach using four volume and one frequency feature with
60 s-window performed best, but they did not compare their
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model with the general LSQ approach. Calculating features
in a 60 s-window is not appropriate in breath-by-breath com-
parisons, whereas we did not include this modified model in
our analysis.

The QDC model was first introduced by Sackner et al. [12]
and is widely used by different research groups [17], [18].
In this study, this model performed worst. The limitations
of the QDC model concerning changing of breathing pattern
are known in literature [19], [20], and our findings confirm
these.

To the best knowledge of the authors, SVR has never been
used for the calibration of exercise RIP data. SVR with linear
kernel achieved the second lowest RMSE value, whereas the
other three kernels (RBF, sigmoid, and polynomial) achieved
rather high RMSE values with a large SD. For obtaining
the best c and ε values, we had to exclude all parameter
combinations where no SVR-model was found. The training
of the SVR-model was based on only 93 ± 22 breaths
(Table I) from the complete resting phase (individually for
each subject). The number of breaths used for the training
might be too small for the creation of accurate SVR-models.

All seven calibration models were calculated using only
data from the resting phase. The resting phase was between
4.3min to 6.2min long with total number of breaths between
34 and 149. Hence, we measured subjects with low breathing
frequencies and calculating gain factor of such few values
might be inaccurate. In the future we suggest to not use a
resting phase with predefined time, but rather a predefined
number of breaths.

In this work, we assumed that the two-degree-of-freedom
model of Konno and Mead [4] is valid, as with this model
accurate calibration was achieved [6]. Nevertheless, different
studies suggested that respiratory motion is complex and
might not be described by a two-degree-of-freedom model
[19]. In further studies, nonlinear models for the calibration
of RIP data should be investigated. Currently, we only
compared calibration models that required a preliminary
resting phase in upright standing posture of about 5min
with simultaneous measurements of RIP and FM. Calibration
models without the use of additional equipment like a FM
would be desirable.

In this work, we showed that a priori calibration of
RIP exercise data is possible using VMCs calculated from
5min resting phase where RIP and FM measurements were
performed simultaneously. The results demonstrate that RIP
has the potential for usage in ambulant applications.
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