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Abstract— Measures of entropy have been proved as powerful
quantifiers of complex nonlinear systems, particularly when
applied to stochastic series of heartbeat dynamics. Despite
the remarkable achievements obtained through standard def-
initions of approximate and sample entropy, a time-varying
definition of entropy characterizing the physiological dynamics
at each moment in time is still missing. To this extent, we
propose two novel measures of entropy based on the inho-
mogeneous point-process theory. The RR interval series is
modeled through probability density functions (pdfs) which
characterize and predict the time until the next event occurs
as a function of the past history. Laguerre expansions of the
Wiener-Volterra autoregressive terms account for the long-term
nonlinear information. As the proposed measures of entropy are
instantaneously defined through such probability functions, the
proposed indices are able to provide instantaneous tracking of
autonomic nervous system complexity. Of note, the distance
between the time-varying phase-space vectors is calculated
through the Kolmogorov-Smirnov distance of two pdfs.

Experimental results, obtained from the analysis of RR
interval series extracted from ten healthy subjects during
stand-up tasks, suggest that the proposed entropy indices
provide instantaneous tracking of the heartbeat complexity, also
allowing for the definition of complexity variability indices.

I. INTRODUCTION

The characterization of short-term cardiovascular control
by studying nonlinear and complex oscillations in Heart
Rate Variability (HRV) has gained popularity and interest
in the last two decades. In particular, it has been proposed
that nonlinear cardiovascular fluctuations are generated by
influence of the Autonomic Nervous System (ANS) [1]–[6],
and that different nonlinear dynamics can be characterized in
several pathologies [7], [8]. As a matter of fact, a sigmoidal
static relationship was found between the vago-sympathetic
balance and heart rate (HR) [9]. Accordingly, analysis meth-
ods derived from the theory of nonlinear system dynamics
may open to novel interpretations of the mechanisms behind
cardiovascular dynamic control.

In this study, we use the definition of entropy mea-
sures as defined by considering the phase-space behavior
of the cardiac system generating the RR interval series
[10]–[12]. The classic definition of entropy H(X) of a
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mono-dimensional discrete random variable X is: H(X) =
−∑xi∈φ p(xi) log p(xi), where φ is the set of values and
p(xi) is the i-th probability function. In order to improve
the entropy estimation using short-time experimental series
with additive noise, entropy measures such as approximate
entropy (ApEn) [10], sample entropy (SampEn) [11], and
multiscale entropy [12] were proposed in the last decade.
These algorithms compute a single value (or a set of values)
given a predetermined time window, thus providing only
single averaged measures of otherwise time-varying system
dynamics. Accordingly, a major improvement in the assess-
ment of complex dynamics pertaining the cardiovascular
system (as well as other stochastic physiological systems)
is related to the new definition of time-varying entropy
measures, able to track the ANS nonlinear dynamics at each
moment in time.

Inspired by our previous studies on point-process nonlin-
ear models, in this study we propose two novel entropy
measures: the Inhomogeneous Point-process Approximate
and Sample Entropy (ipApEn and ipSampEn, respectively).
More in detail, using the point-process theory and nonlinear
autoregressive models with Laguerre expansion of Wiener-
Volterra terms (NARL) [7], [13], [14], it is possible to
effectively characterize the probability density function (pdf)
of each heartbeat through knowledge of the past heartbeats
events. Therefore, we use this inhomogeneous point-process
model to perform time-varying estimates of the phase-space
vectors of the RR series, while defining the distance between
phase-space vectors through the Kolmogorov-Smirnov (KS)
distance between two pdfs. Once the new time-varying
distance between phase-space vectors is computed, the calcu-
lation of the proposed ipApEn and ipSampEn entropy mea-
sures follows the traditional ApEn and SampEn algorithms.

As a result, the ipApEn and ipSampEn indices, when
estimated from RR interval series, are able to provide
an instantaneous complexity assessment of the underlying
ANS dynamics, even considering short recordings under
nonstationary conditions commonly associated with specific
physiological processes, and without using any interpolation
method [7], [13]–[18]. Moreover, thanks to the Laguerre
expansions, the ipApEn and ipSampEn estimates account
for long-term memory and quadratic nonlinearities using a
reduced set of model parameters [7], [17], [19].

II. METHODS

When applied to heartbeat dynamics, the new defini-
tions of ipApEn and ipSampEn are obtained through a
parametrized nonlinear combination of the past RR sam-
ples using the discrete Wiener-Volterra series and Laguerre

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 6369



expansion of the autoregressive kernels. These parameters
model the first moment order of a parametric pdf char-
acterizing the next heartbeat event as dictated by point-
process theory. Instantaneous estimates of the ipApEn and
ipSampEn measures are obtained by considering a novel
definition of distance between phase-space vectors within the
standard ApEn and SampEn algorithms. Mathematical and
algorithmic details follow below.

A. Point-Process Theory and Nonlinear Models of Heartbeat
Dynamics

In assessing heartbeat dynamics, assuming history de-
pendence, the point-process models address the probability
distribution of the waiting time t until the next R-wave event
as an inverse Gaussian (IG) probability distribution [15]:

f (t|Ht ,ξ (t)) =
[

ξ0(t)
2π(t−u j)3

] 1
2

× exp
{
−1

2
ξ0(t)[t−u j−µRR(t,Ht ,ξ (t))]2

µRR(t,Ht ,ξ (t))2(t−u j)

}
(1)

where {u j}J
j=1 is the set of R-wave events detected from the

ECG, and RR j = u j−u j−1 > 0 denotes the jth RR interval.
Here we define the IG instantaneous mean µRR(t,Ht ,ξ (t))

as a combination of present and past R-R intervals based on
the NARL model [7], [19]:

µRR(t,Ht ,ξ (t)) = RRÑ(t)+g0(t)+
p

∑
i=0

g1(i, t) li(t−)+
q

∑
i=0

q

∑
j=0

g2(i, j, t) li(t−) l j(t−) (2)

where Ht the history given the part RR intervals, ξ (t) =
[ξ0(t),g0(t),g1(0, t), ...,g1(p, t),g2(0,0, t), ...,g2(i, j, t)] with
ξ0(t) as the shape parameter of the IG distribution, and
li(t−) = ∑

Ñ(t)
n=1 φi(n)(RRÑ(t)−n−RRÑ(t)−n−1) is the output of

the Laguerre filters just before time t, φi(n) is the ith Laguerre
function, Ñ(t) is the left continuous sample path of the
associated counting process, and g0,{g1(i)}, and {g2(i, j)}
correspond to the time-varying zero-, first-, second-order
NARL coefficients, respectively [7], [19], [20].

The ith Laguerre function is defined as follows:

φi(n) = α
n−i

2 (1−α)
1
2

i

∑
p=0

(−1)p
(

n
p

)(
i
p

)
α

i−p(1−α)p,

(3)
with (n ≥ 0), is the ith Laguerre function with 0 < α < 1,
which determines the rate of exponential asymptotic decline
of these functions, and g0,{g1(i)}, and {g2(i, j)} correspond
to the time-varying zero-, first-, second-order NARL coeffi-
cients, respectively [7], [19], [20].

Therefore, given the original RR interval series, the output
of the Laguerre filters is firstly evaluated through the con-
volution between the derivative RR series and the Laguerre
functions. Then, the parameters of eq. 2 are estimated to
model the first order moment of the IG probability distri-
bution. Since this IG distribution is characterized at each
moment in time, it is possible to obtain an instantaneous
estimate of µRR(t) at a very fine timescale (with an arbitrarily
small bin size ∆), which requires no interpolation between

the arrival times of two beats, therefore addressing the
problem of dealing with unevenly sampled observations.
Moreover, eq. 2 accounts for long-term memory and reduced
number of parameters needed for the linear and quadratic
functions [7], [21].

We effectively estimate the parameter vector ξ (t) using the
Newton-Raphson procedure to compute the local maximum-
likelihood estimate [7] within a sliding time-window of
W = 90. Because there is significant overlap between adja-
cent local likelihood intervals, we start the Newton-Raphson
procedure at t with the previous local maximum-likelihood
estimate at time t−∆. Model goodness-of-fit is based on the
KS tests and associated KS statistics [15], [22], along with
autocorrelation plots testing the independence of the model-
transformed intervals [15].

B. Definition of the Inhomogeneous Point-Process Entropy
Measures

The ipApEn and ipSampEn mathematical definition has
its foundation in correlation dimension analysis [23] and in
the ApEn and SampEn computation [10], [11], respectively.
Specifically, let us define a distance measure d[.] between
two IG distributions of two heartbeat according to the KS
distance measures (i.e. maximum value of the absolute dif-
ference between two cumulative distribution functions). For
each pair of phase space vectors, which are defined as x(k) =
[µRR(tk),µRR(tk+1), ...,µRR(tk+m−1)] in ℜm of the time series
µRR(t1),µRR(t2), ...,µRR(tN) with embedding dimension m=
2, let us define Cm

k (r(t), t) as the number of points x( j) such
that

d[x(k),x( j)]≤ r(t),∀ j (4)

and normalized by the quantity (N−m+1). Parameters m
and r(t) are the embedding dimension and time delay of the
phase-space, respectively. The time-varying quantity r(t) is
instantaneously expressed as r(t) = 0.2σµRR(t) , as suggested
by the current literature [12].

The ipApEn(m,r, t) and ipSampEn(m,r, t) are instanta-
neously derived following the standard ApEn and SampEn
algorithms [10], [11], through the calculation of the normal-
ized term Cm(r, t).

Then, from the Cm
k (r, t) it is possible to define:

Φ
m(r, t) = (N−m+1)−1

N−m+1

∑
i=1

lnCm
k (r, t) (5)

and obtain:

ipApEn(m,r,N, t) = Φ
m(r, t)−Φ

m+1(r, t). (6)

Our instantaneous complexity assessment allows for the
possibility of analyzing the proposed measures also in
terms of variability of their evolution along time, which
we refer to as complexity variability . Formally, if we
consider ipApEn(m,r,N) and ipSampEn(m,r,N) as the aver-
age measures of ipApEn(m,r,N, t) and ipSampEn(m,r,N, t)
within the N∗ data points time window T = [t1, t2, . . . , tN∗ ],
then two novel complexity variability measures, σipApEn
and σipSampEn, refer to the standard deviation of the
ipApEn(m,r,N, t) and ipSampEn(m,r,N, t) series evaluated
within T .
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III. EXPERIMENTAL RESULTS

Given a generic entropy measure X , all results in this paper
are expressed as Median(X)±MAD(X), where MAD(X) =
Median(|X−Median(X)|).

In order to demonstrate that the proposed complexity
assessment is able to track changes of ANS dynamics,
we tested the ipApEn and ipSampEn entropy measures
on RR interval time series recorded from 10 healthy sub-
jects undergoing a protocol including several consecutive
postural changes. The study, fully described in [15], [24],
was conducted at the Massachusetts Institute of Technology
(MIT) General Clinical Research Center (GCRC) and was
approved by the MIT Institutional Review Board and the
GCRC Scientific Advisory Committee.

Fig. 1. Averaged ipApEn and ipSampEn trends for all rest/stand-up
protocol segments among all subjects.
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Fig. 2. Instantaneous heartbeat statistics computed from a representative
subject of the postural changes protocol using a NARL point process model.
In the first panel, the estimated µRR(t) is superimposed on the recorded R-R
series. Below, the instantaneous ipApEn and ipSampEn complexity tracking
are shown.

The model orders p = 4, q = 2, and α = 0.2 were chosen
by preliminary KS plots goodness-of-fit analysis [15]. For
each index, we evaluated the statistical differences between
the two phases expressed as p-values from the Wilcoxon non-
parametric test for paired data, under the null hypothesis

TABLE I RESULTS FROM THE EXPERIMENTAL DATASET RELATED

TO THE SUPINE TO STAND-UP CHANGES ON STANDARD AND NOVEL

ENTROPY INDICES.

Rest Stand-Up p-value
ApEn 1.1220 ± 0.0553 0.9443 ± 0.0789 < 10−3

ipApEn 0.2832 ± 0.0694 0.2561 ± 0.0621 <0.03
σipApEn 0.0672 ± 0.0145 0.0504 ± 0.0111 <0.05
SampEn 1.5008 ± 0.1921 1.2433 ± 0.2446 <0.025

ipSampEn 0.2832 ± 0.0686 0.2635 ± 0.0638 <0.05
σipSampEn 0.0837 ± 0.0175 0.0650 ± 0.0172 n.s.

p-values from non-parametric Wilcoxon test for paired data with null
hypothesis of equal medians

n.s. = not significant

of equal medians. A representative tracking of the proposed
entropy measures is shown in Fig. 2, whereas the averaged
ipApEn and ipSampEn trends on all 10 subjects are shown
in Fig. 1. These figures provide a clear portrayal of how the
stand-up task, associated to sympatho-vagal changes, elicits
expected changes in the dynamic signatures of complexity.
On average, see Table I, a significant statistical difference
was found between median ipApEn and ipSampEn values
of resting and standing up phases (p < 0.03 and p < 0.05,
respectively). These results are in agreement with the cur-
rent literature [25], providing other evidences of decreased
complexity during changes involving baroreflex. The two
experimental sessions are also significantly distinguished by
the complexity variability index σipApEn with p < 0.05.

Of note, in this case also the traditional ApEn and SampEn
measures are able to discern between rest and stand-up
phases (p < 10−3 and p < 0.025, respectively). However, it
is important to notice that traditional measures are not able
to dynamically follow changes in complexity.

IV. CONCLUSION AND DISCUSSION

In conclusion, we propose two novel measures of en-
tropy, ipApEn and ipSampEn. These measures are derived
by taking advantage of the standard ApEn and SampEn
algorithms, and by using the powerful information and
performances of inhomogeneous point processes to provide
an instantaneous assessment. To our knowledge, the novel
proposed measures can only be calculated within a point-
process framework, because the mathematical description of
ipApEn and ipSampEn is based on the KS distance between
the two pdfs associated to each pair of heartbeats.

As complexity is a property that arises in nonlinear sys-
tems, we built up the mathematical bases of ipApEn and
ipSampEn on our nonlinear fully autoregressive models with
Laguerre expansion of the Wiener-Volterra terms. Like other
parametric methods, a tuning of model parameters such as
the Laguerre coefficient α , model order, time-window W size
for the local-likelihood parameter estimation, and the radius
r(t) is required. To this extent, in the presented application
we were able to obtain reproducible and reliable results by
using standard values such as α = 0.2, r = 0.2std(X) (with
X the RR series), a W > 70 seconds, as well as optimal
model orders by minimizing the KS statistics. Overall, our
ipApEn and ipSampEn analysis gives an accurate time-
varying and adaptive characterization for real-time moni-
toring of HRV complexity, and also is able to summarize
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results comparable to standard performances of ApEn and
SampEn [25]. Remarkably, all the advantages associated to
the use of point process NARL modeling [7], [13], [14],
[16]–[18] (e.g. no interpolation required, model goodness
of fit, effective parameter estimation as provided by the
orthonormal Laguerre bases, dynamical spectra and bispectra
estimates, etc.) are inherited by the ipApEn and ipSampEn
definition. Moreover, the results on healthy subjects undergo-
ing a simple stand-up task show that instantaneous entropy of
heartbeat dynamics reflects a significant decrease in complex
ANS dynamics when transitioning from supine to upright
posture.

A more exhaustive description and further experimental
results of the proposed methodology are reported in [26].
Our instantaneous complexity assessment opens to the pos-
sibility of analyzing the proposed measures also in terms of
variability of the indices’ evolution along time, a fascinating
concept that we have recently explored in patients with
severe congestive heart failure [27], and defined as com-
plexity variability. Finally, the proposed methodology offers
a promising mathematical tool for the dynamic analysis
of a wide range of applications to potentially study any
physical and natural stochastic discrete process (see e.g.
[7], [26]). Future work will be focused on characterization
of the noise properties of the proposed indices, as well as
performance evaluation of different datasets gathered also
from pathological subjects.
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