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Abstract— Methods based on the multivariate autoregressive 

(MVAR) approach are commonly used for effective connectivity 

estimation as they allow to include all available sources into a 

unique model. To ensure high levels of accuracy for high model 

dimensions, all the observations are used to provide a unique 

estimation of the model, and thus of the network and its 

properties. The unavailability of a distribution of connectivity 

values for a single experimental condition prevents to perform 

statistical comparisons between different conditions at a single 

subject level. This is a major limitation, especially when dealing 

with the heterogeneity of clinical conditions presented by 

patients. In the present paper we proposed a novel approach to 

the construction of a distribution of connectivity in a single 

subject case. The proposed approach is based on small 

perturbations of the networks properties and allows to assess 

significant changes in brain connectivity indexes derived from 

graph theory. Its feasibility and applicability were investigated 

by means of a simulation study and an application to real EEG 

data.  

I. INTRODUCTION 

In neuroscience, the concept of brain connectivity is 
central for the understanding of the organized behavior of 
cortical regions beyond the simple mapping of their activity 
[1]. Connectivity estimation techniques aim to describe 
interactions between cerebral areas as connectivity patterns 
describing direction and strength of the information flow 
between such areas. The quantitative characterization of the 
main properties of the networks allows to extract a set of 
indexes able to summarize the information provided by the 
connectivity estimator [2]. 

Among several connectivity estimators, those based on 
Granger Causality are extensively used in neuroelectrical 
studies. Several studies have proved the accuracy of 
methods, such as Partial Directed Coherence (PDC) [3], 
which are defined in frequency domain and based on the use 
of MVAR models built on original time-series. The 
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simultaneous integration of all the signals in the same 
autoregressive model, reducing the hidden sources dilemma 
typical of the bivariate approach, leads to an increase of the 
estimation accuracy [4, 5]. However, the increase of model 
dimensions in multivariate approaches requires a 
considerable amount of observations (repetitions of the same 
phenomenon) for guaranteeing the correct estimation of the 
MVAR parameters. For this reason, all the available 
observations are used to provide a unique and accurate 
estimate of the investigated connectivity network and of the 
corresponding indexes.  

The unavailability of a connectivity distribution for the 
single subject does not allow to assess statistically significant 
changes in the network properties at different conditions. 
Group analysis can provide a solution when it is possible to 
collect a homogeneous sample, which is not always true, 
especially in clinical applications, where patients usually 
present heterogeneous conditions. 

The application of statistical resampling to data before 
the connectivity estimation represents a partial solution to 
such issue. The use of jackknife or bootstrapping [5] 
methods, to be applied directly to the available observations, 
provides distributions of connectivity patterns that can 
support statistical comparisons. However, the computational 
cost of such approaches is very high because the multivariate 
estimate is computed at each resampling iteration. The 
burden of such computations might be avoided by shifting 
from data resampling to the resampling of connectivity 
matrices, with the aim to alter the connectivity patterns by 
keeping, at the same time, their main properties, resulting in 
a distribution of specific brain indexes.  

In the present study we proposed a new approach which, 
operating directly on the adjacency matrix that describes the 
networks structure, aims at building a specific distribution 
for each brain index, without iterating the time consuming 
connectivity estimation process. To evaluate the new 
approach, we first performed a simulation study in which we 
tested its capacity to take into account the variability induced 
in connectivity patterns by physiological, instrumental and 
modeling factors always present in a typical 
electroencephalographic (EEG) study. Then we validated the 
method on real EEG data recorded during a cognitive task. 

II. MATERIAL AND METHODS 

A. Graph Theory Approach 

A graph consists of a set of vertices (or nodes) and a set 
of edges (or connections) indicating the interaction between 
the vertices. The adjacency matrix G contains the 
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information about the connectivity structure of the graph and 
is built by comparing the values of connectivity matrix A 
with a statistical threshold representing the null-case [6]. 
Several indexes based on the elements of such matrix can be 
extracted for the characterization of the main properties of 
investigated networks:  Global Efficiency, Local Efficiency 
[7], Degree, Characteristic Path Length and Clustering 
Coefficient [2].  

B. The new Adjacency Matrix Resampling Approach 

The new approach proposed in this paper is based on 
iterative small perturbations induced to the structure of the 
network whose properties we would like to characterize. The 
idea is to empirically reproduce the physiological, 
instrumental and modeling variability of real networks. Such 
perturbations are introduced by modifying the entries of the 
adjacency matrix according to three different criteria: a 
prefixed percentage of connections can randomly i) be 
deleted from the network, ii) be added to the pattern or iii) 
change position within the network. The random iteration of 
such perturbation process allows to build a distribution of the 
adjacency matrix and thus of all the indexes describing its 
properties. The verify if the validity of the proposed method 
and the selection of the best combination of the parameters 
to be set for employing it have been performed by means a 
simulation study in which the three approaches were 
statistically compared on the basis of the percentage of 
modified connections. 

C. Simulation Study 

The simulation study was conducted on 100 adjacency 
matrices extracted from real high resolution EEG data (51 
channels) recorded on healthy subjects during 2 minutes of 
rest with eyes closed. The following steps were performed: 

1. Each adjacency matrix was resampled by means of 
three different approaches (METHOD) in which a 
prefixed percentage of connections was randomly 
removed from the matrix (LEAVE-OUT), added to the 
matrix (ADD-ON) or moved in other positions 
(MOVED) respectively. The resampling was performed 
for different values of percentage of modified 
connections (%CONN: 5, 10, 20, 30, 50) and 
resampling iterations (RES-ITER: 50, 100, 250). 

2.  The following graph theory indices were extracted 
from each resampled adjacency matrix: Global 
Efficiency (GlobEff), Local Efficiency (LocEff), Path 
Length (PL), Clustering (Clust), Degree (deg) 
(INDEX). 

3. In order to evaluate the properties of the resampled 
indexes distributions we defined two parameters, the 
relative polarization error (bias) and the distribution 
dispersion whose formulations are as follow: 
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where   and N represent the average value of index   

and the numerousness of the distribution respectively. 

All the steps were repeated for each adjacency matrix and 
the results were subjected to a four-way repeated measures 
ANOVA computed considering as dependent variables the 
bias and the dispersion parameters and as within main factors 
the resampling methods, the percentage of modified 
connections, the resampling iterations and the graph indexes. 

D. Application to Real EEG Data 

The data used for testing the proposed methodology were 
recorded on a healthy subject who took part in a motor 
imagery experiment. Subject was asked to perform, 
according to the position of a red target on the screen, one of 
the following tasks: prolonged grasping of both hands (G) 
for the whole task length or just to relax (R). The experiment 
was divided into 6 runs of 24 trials each (randomly ordered). 
The task length was set to 15 seconds and the inter-trial 
interval to 2 seconds. EEG potentials were recorded by a 61-
channel system by means of an electrode cap (BrainAmp, 
Brainproducts GmbH, Germany). Sampling rate was 200 Hz.  

EEG data were pre-processed, segmented in the interval 
[-500;1000]ms according to the onset of the red target on the 
screen and were subjected to time-varying functional 
connectivity analysis [4], [8]. The connectivity patterns 
estimated for each time sample were averaged in six time 
intervals of 250ms each, defined according to the “GO” 
stimulus and in four frequency bands, defined according to 
the Individual Alpha Frequency (IAF) [9]. Connectivity 
patterns elicited during task and rest conditions were 
statistically compared for a significance level of 5%, False 
Discovery Rate corrected for multiple comparisons. The 
statistical threshold was also used for deriving the 
corresponding adjacency matrices on which different graph 
theory indexes were computed [6]. In order to compare, at 
single subject level, the indexes achieved in different 
conditions the LEAVE-OUT resampling method was 
applied. In particular we performed 50 resampling iterations 
by deleting each time 10% of connections. 

III. RESULTS 

A.  Simulated Data 

Results of the four way ANOVA computed on the two 
parameters extracted in the simulation study revealed a 
strong statistical influence of the main factors METHOD 
(F=2903, p < 0.00001), INDEX (F=758, p < 0.00001), and 
%CONN (F=778, p<0.00001), as well as their interactions 
METHOD x INDEX (F=983, p<0.00001), METHOD x 
%CONN (F=7159, p<0.00001), INDEX x %CONN (F=887, 
p<0.00001) and METHOD x %CONN x INDEX (F=1707, 
p<0.00001) on bias parameter. Similar results were found for 
the dispersion index (METHOD (F=1255, p < 0.00001), 
INDEX (F=588, p < 0.00001), and %CONN (F=952, 
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p<0.00001), as well as their interactions METHOD x 
INDEX (F=506, p<0.00001), METHOD x %CONN 
(F=1740, p<0.00001), INDEX x %CONN (F=1017, 
p<0.00001) and METHOD x %CONN x INDEX (F=537, 
p<0.00001)). No significant effect of RES-ITER factor and 
its interactions with other factors was found on both 
parameters. 

 

Figure 1.  Results of ANOVA performed on Bias (panel a  F=1707, 

p<0.00001) and Dispersion (panel b  F=537, p<0.00001)) parameters 

computed on resampled indexes distributions, METHOD

fi

 

In Fig.1 we reported the results of ANOVA performed on 
Bias (panel a) and Dispersion (panel b) parameters computed 

on resampled indexes distributions, METHOD

 

 

Figure 2.  Time-frequency connectivity distribution for causal links 

spreading from C3 (panel a) and C4 (panel b) electrodes and directed to 

their nearest neighbors. In each matrix we reported the PDC values for the 

corresponding causal link achieved along all the time samples in [-

500;1000] ms considered window and over all the included frequency 

samples in the range [1-45]Hz. 

B. Real EEG Data  

Time-varying connectivity was applied to the EEG data of 

a representative subject performing a grasping imagery task. 

Fig.2 shows the time-frequency connectivity distribution for 

causal links spreading out from C3 (panel a) and C4 (panel 

b) electrodes and directed to their nearest neighbors. No 

significant activations resulted before the “GO” onset 

between Grasping and Rest conditions for both channels. 

Since 250 ms after the beginning of imagery task a 

connection directed from C3 to its neighbors was found in 

the frequency range of Theta and Alpha bands. The strength 
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of the significant connections for C4 was weaker than the 

one achieved for causal links spreading out from C3, 

confirming the important role of the left hemisphere 

(dominant hemisphere because the subject is right-handed) in 

motor imagery tasks [10]. In order to statistically confirming 

such difference in the involvement of the two electrodes 

during the motor imagery we applied the proposed 

resampling approach. In Fig.3 we reported a bar diagram 

with the trend of C3 (blue bars) and C4 (red bars) degree 

index across four different time intervals in Alpha band. The 

statistical analysis on resampled degree distributions 

revealed significant differences between the degree of the 

two electrodes since 250ms after the GO stimulus. In 

particular the degree of C3 resulted statistically higher than 

the one computed for C4. 

 

Figure 3.  Bar diagrams reporting the trend of C3 (blue bars) and C4 (red 

bars) degree index across the four different time intervals ([0:250]ms, 

[250:500]ms, [500:750]ms, [750:1000]ms) in Alpha band. The symbol (*) 

highlights a statistical difference between C3 and C4 electrodes (unpaired 

t-test, p<0.05). 

IV. DISCUSSION 

The results of the simulation study provided some 
guidelines for the use of the proposed method. As expected, 
both bias and polarization parameters increase according to 
the increase of the percentage of modified connections. In 
fact, the greater the perturbation applied to the network, the 
greater is the error in estimating the expected value of the 
indexes. Considering percentages of modified connections 
below 10%, we achieve distribution with dispersion around 
3% and polarization error below 10%. High perturbations of 
the networks (%CONN > 20%) led to inaccurate 
distributions of graph indexes. Among the three different 
types of perturbations, the LEAVE-OUT approach achieved 
the best performances, because it allows, on equal 
conditions, to achieve distributions with higher dispersion 
and lower polarization error for all the considered indexes. 
The use of LEAVE-OUT approach with 10% of deleted 
connections is confirmed as valid choice by the application 
of the method to real data. The results achieved for the hand 
grasping imagery task and, in particular, the unbalance 
(controlateral > ipsilateral) between the two hemispheres, in 
agreement with the physiology of movement execution [11], 

[12] and imagination, confirmed the feasibility of a statistical 
analysis, allowing the evaluation of single subject significant 
changes in connectivity properties. 

V. CONCLUSION 

The results of the simulation study and the application to 

high density EEG suggest that the proposed method provides 

accurate distributions of the indexes describing the networks 

properties, with a procedure that requires reduced 

computational and time resources with respect to classical 

resampling approaches. The new method here proposed can 

thus provide an effective tool for assessing significant 

modifications in brain network properties at a single subject 

level. 
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