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Abstract— Voluntary adjustment of the breathing pattern
is widely used to deal with stress-related conditions. In this
study, effects of slow and fast breathing with a low and high
inspiratory to expiratory time on heart rate variability (HRV)
are evaluated by means of information dynamics. Informa-
tion transfer is quantified both as the traditional transfer
entropy as well as the cross entropy, where the latter does
not condition on the past of HRV, thereby taking the highly
unidirectional relation between respiration and heart rate into
account. The results show that the cross entropy is more
suited to quantify cardiorespiratory information transfer as
this measure increases during slow breathing, indicating the
increased cardiorespiratory coupling and suggesting the shift
towards vagal activation during slow breathing. Additionally
we found that controlled breathing, either slow or fast, results
as well in an increase in cardiorespiratory coupling, compared
to spontaneous breathing, which demonstrates the beneficial
effects of instructed breathing.

I. INTRODUCTION

Mental stress is a growing problem that has been asso-
ciated with an increased cardiovascular risk [1]. In order
to diminish the negative effects of stress-related disorders,
people have been trying to cope with this, often by vol-
untarily adjusting the breathing pattern [2]. Most breathing
instructions aim to acquire a shift towards a reduction in
sympathetic activation and an increase in vagal activity.

Information regarding cardiac autonomic control is typi-
cally assessed via heart rate variability (HRV). One of the
main modulators of HRV is respiration, a phenomenon that
is called respiratory sinus arrhythmia (RSA) and that is
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linked to vagal outflow and leads to an increase in heart
rate during inspiration and a decrease during expiration [3].
Seeing that RSA is strongly dependent on the frequency and
depth of breathing [4], it is interesting to investigate whether
adaptation of the breathing pattern alters the autonomic
balance and evaluate whether this can be used to reduce the
negative stress-related effects on autonomic control. Most
breathing instructions to enhance vagal activation include
a reduction in breathing frequency and increase in tidal
volume. It is however unclear to which extent other features
of the breathing pattern, such as the ratio between inspiratory
and expiratory phase (i/e ratio), contribute to the beneficial
effects of slow breathing. We therefore aim to investigate
the effects of controlled breathing on the autonomic balance,
manipulating both breathing frequency and i/e ratio.

Analyses of these manipulations already revealed that slow
breathing is accompanied by higher tidal volumes and that
a lower i/e ratio results in a higher heart rate, but that the
heart rate is not influenced by the breathing frequency, as
reported in [5]. In addition, as expected, RSA is higher when
breathing at 6 compared to 12 breathing cycles per minute
(cpm). An increased RSA is also found in a low compared
to high i/e ratio, yet only when breathing at 6 cpm.

In this study, we aim to assess autonomic behaviour during
controlled breathing by means of information-theoretic mea-
sures that quantify information storage and transfer of HRV
and respiration. Information theory has proven to be useful to
evaluate directional interactions in cardiorespiratory data [7],
and gives other insights than the traditional HRV analyses
and analyses of cardiorespiratory coupling by means of e.g.
correlation, coherence and synchronisation methods.

II. METHODS

A. Data Acquisition and Preprocessing

1) Participants: In the context of a study concerning the
effects of respiratory rate and i/e ratios on self-reported
relaxation states, and on RSA and HRV, 30 students (18-
22 years; 2 men) have been selected to participate in the
experiment [5]. The data are collected at the Faculty of
Psychology and Educational Sciences of the KU Leuven
(Leuven, Belgium). The study is approved by the local
ethical committee. All participants provided written informed
consent.

2) Instrumentation: The LifeShirt System (Vivometrics
Inc., Ventura, CA) is used to measure the electrocardiogram
(ECG, sampling frequency fs = 200 Hz) and respiration (fs
= 50 Hz). Respiration is recorded by means of inductive
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plethysmography around the abdomen and rib cage. Based
on those two displacements, an estimation of the tidal volume
is made, which is further used as respiratory signal. In order
to take possible delays between respiratory drive and the
recorded tidal volume into account, thereby affecting the
causality relation, a time lag of 0.5 s is included in the
recorded respiratory signal [6].

3) Experimental Protocol: First, baseline recordings are
measured for 7 minutes while sitting quietly and breathing
spontaneously. Next, the participants practiced four different
breathing patterns, each for 45 s; at first, a pattern of 12
cpm is instructed with an inspiratory time of 1.5 s and an
expiratory period of 3.5 s (i/e ratio = 0.42). The second
breathing pattern is also at 12 cpm, but with a reversed i/e
ratio (= 2.33; 3.5 s in- and 1.5 s exhalation time). In the third
case, a respiratory rate of 6 cpm is imposed, again with an i/e
ratio of 0.42 (3 s in- and 7 s exhalation time). The last pattern
comprises a rate of 6 cpm with an i/e ratio of 2.33 (7 s in-
and 3 s exhalation time). These four patterns will further be
referred to by their breathing frequency of 6 (slow) or 12 cpm
(fast breathing), and a low or high i/e ratio. After this practice
period, the recordings during the various breathing patterns
started. The participants are asked to follow each breathing
pattern during 5 minutes, while being assisted by breathing
videos. The 24 possible presentation orders of the breathing
patterns are counterbalanced across the participants.

4) Preprocessing: The tachogram is constructed after R
peak detection using the Pan-Tompkins algorithm. In order to
obtain an accuracy of 1 ms when constructing the tachogram,
parabolic interpolation using 5 samples around the detected
peak is performed. Next, both tachogram and respiratory sig-
nal are resampled at 2 Hz using cubic spline interpolation and
both signals are high-pass filtered with a cut-off frequency
of 0.05 Hz in order to remove baseline wander. Additionally,
the first 10 s of each breathing pattern are removed to reduce
transient behaviour. From the baseline period of spontaneous
breathing, a 5 minute segment is randomly selected to match
the data size of the controlled breathing periods.

B. Information Dynamics

1) Information Decomposition: Consider a system that is
composed of two interacting processes X and Y , then the
predictive information PY measures how much information
carried by the present sample Yn can be predicted by the
knowledge of the past of X and Y , written as V X,Y

n :

PY = H(Yn)−H(Yn|V X,Y
n ), (1)

with H(Yn) the Shannon entropy.
The predictive information of Y can also be written as the

sum of the transfer entropy TX→Y and the self entropy SY ,
with

TX→Y = H(Yn|V Y
n )−H(Yn|V X,Y

n ) (2)

SY = H(Yn)−H(Yn|V Y
n ). (3)

The transfer entropy TX→Y indicates how much information
that is carried by Yn, that was not already predicted by the

past of Y , can be predicted by the past of X , while the
self entropy SY is a measure of information storage that
quantifies how much of the information carried by Yn can
be predicted by the knowledge of its own past. When the
information transfer between several interacting processes is
assessed, transfer entropy is typically used [7].

Alternatively, we can decompose the predictive infor-
mation as the sum of the cross entropy CX→Y and the
conditional self entropy SY |X , with

CX→Y = H(Yn)−H(Yn|V X
n ) (4)

SY |X = H(Yn|V X
n )−H(Yn|V X,Y

n ). (5)

The cross entropy CX→Y is a measure of information
transfer and quantifies how much information that is carried
by Yn can be predicted by the past of X . The conditional self
entropy SY |X quantifies information storage by assessing
how much of the information carried by Yn can be predicted
by the knowledge of its own past, conditioned to the knowl-
edge of the past of X .

Let X = r be the respiratory signal and Y = R the
RR interval series, then both Tr→R and Cr→R are measures
of information transfer, indicating cardiorespiratory coupling.
Information storage of HRV is quantified by SR and SR|r.

2) Computation of Conditional Entropy: Entropy is com-
puted according to H(Yn) = −

∑
p(yn)ln p(yn), which

requires the estimation of the probability function p(·).
When conditional entropy, e.g. H(Yn|V X,Y

n ), needs to
be estimated, first we need to determine the condition-
ing vector V X,Y

n . In this application, a non-linear model-
free approach with non-uniform embedding is used. In
this procedure, the conditioning vector V X,Y

n is built by
selecting terms from an initial candidate set V̂

X,Y

n =
[Xn−1, . . . , Xn−L, Yn−1, . . . , Yn−L] that includes lags up to
L = 10, such that the conditional entropy H(Yn|V X,Y

n ) is
minimized and as such, the description of the target series Y
is optimized. When there is no significant decrease in condi-
tional entropy, as determined by a randomization test [8], the
selection procedure of terms for the conditioning vector ends.
Note that delays between the cardiorespiratory time series,
possibly induced by the controlled breathing protocol, are
taken into account by the high number of lags (up to 5 s)
that are included in the candidate set. The entropies in Eqs.
(1-5) are estimated using the histogram with 6 quantization
levels. A more detailed description of this procedure can be
found in [7]. All entropies were computed using the MuTE
toolbox (http://users.ugent.be/~dmarinaz/MuTE.html).

C. Statistical Analysis

After testing for normality and equal variances, a two-way
within-subject ANOVA is conducted on the four controlled
respiratory patterns, with breathing frequency, i.e. 6 or 12
cpm, and i/e ratio, i.e. low or high as factors. A p < 0.05 is
considered statistically significant.

III. RESULTS
Fig. 1 displays the predictive information during sponta-

neous breathing and the four controlled breathing patterns.
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Fig. 1. Boxplot of the predictive information PR during spontaneous
breathing, breathing at 12 and 6 cpm with i/e ratios of 0.42 (low) and 2.33
(high). * indicates significant differences between a low and high i/e ratio.

There is a significant effect of breathing frequency, where
slow breathing is accompanied by an increase in PR. No
effect of i/e ratio is found, but a significant interaction effect
indicates that only at 12 cpm, a low i/e ratio results in a
higher PR than a high i/e ratio. It is also interesting to note
that PR is lower during spontaneous breathing than during
controlled breathing.

The decomposition of predictive information in transfer
and self entropy is given in Fig. 2. Tr→R and SR exhibit
significant effects of breathing frequency, with a higher
Tr→R and lower SR during fast compared to slow breathing.
Although both in Tr→R and SR, no effect of i/e ratio is
found, a significant interaction effect is observed in SR,
showing also that at 12 cpm, a low i/e ratio results in a
higher self entropy than a high i/e ratio.

The alternative decomposition of predictive information
using cross and conditional self entropy is given in Fig.
3. In terms of information transfer and storage, exactly the
opposite trends as in the traditional decomposition are found;
Cr→R is significantly lower at 12 cpm than at 6 cpm,
while SR|r is higher during fast than slow breathing. The i/e
ratio does not alter Cr→R or SR|r. Spontaneous breathing
results in a lower Cr→R than controlled breathing, while the
conditional self entropy exhibits the opposite.

IV. DISCUSSION

A. Information Transfer and Storage

The two different decompositions of predictive informa-
tion into a component related to information storage and
another component related to information transfer lead to
entirely opposite results; while SR|r and Tr→R are higher
during fast than slow breathing, SR and Cr→R are precisely
lower when breathing at 12 cpm.

The opposing results can be explained by the different
mechanisms of information storage; information storage as
traditionally defined by SR not only includes internal mem-
ory mechanisms in the target process R, but also memory in
the target process that originates from the driving process r
[9]. In this traditional decomposition, the information storage

is in fact favoured at the expense of the information transfer,
because we first condition on the past of the target series.
However in doing so, the measured storage may also reflect
part of the information transfer, thereby underestimating
Tr→R. The alternative decomposition does not have this
problem because we subserve the information transfer by first
conditioning on the past of the driving respiratory process,
but it has the limitation that Cr→R is not a measure of
causality in the Granger sense since it can be nonzero in
the absence of causality. However, by exploiting the highly
unidirectional relation between respiration and HRV, this
limitation is circumvented. Moreover, in accordance to the
reduction in RSA during fast breathing that was reported
in [5], the information transfer as quantified by Cr→R

is lower compared to slow breathing. Note however that
the information transfer is a measure of cardiorespiratory
coupling, but is not necessarily correlated to RSA amplitude.

Information storage is related to the self predictability of
the tachogram and is typically associated with an unhealthier
cardiovascular system as this indicates a reduced flexibility
to respond to bodily demands [10]. Again, the alternative
definition of information storage, i.e. SR|r which we can
consider as the residual (free from respiration) self pre-
dictability, seems more suitable as its reduction, in contrast
to the increase of SR, during slow breathing also corresponds
to the expected shift in autonomic balance.

These results motivate the use of cross entropy and
conditional self entropy in cardiorespiratory applications as
they exploit the directional knowledge between respiration
and heart rate. Transfer entropy underestimates the true
information transfer from respiration to HRV, while self
entropy overestimates the information storage.

B. Breathing Patterns

The cross entropy is higher during slow than fast
breathing, indicating an increased cardiorespiratory coupling,
which is probably related to the shift in autonomic bal-
ance towards vagal activity as previous findings reported.
Although RSA significantly differed between a high and low
i/e ratio during slow breathing [5], this was not perceived in
Cr→R, demonstrating that the cross entropy is related to car-
diorespiratory coupling, but not as such RSA amplitude. It is
also interesting to note that during spontaneous breathing the
cross entropy is significantly lower than during all controlled
breathing patterns. This suggests that only the imposition of
following a certain breathing pattern, already results in an
increase in cardiorespiratory coupling, and possibly RSA,
and thus shows the potential of instructed breathing to cope
with stress-related conditions.

As already mentioned, the conditional self entropy can
be associated with the ability of the autonomic nervous
system to quickly respond to bodily demands [10]. Fast
and spontaneous breathing both result in increased values
for SR|r, suggesting again the beneficial effects of slow
breathing; not only the cardiorespiratory coupling increases
during slow breathing, the low values for SR|r also indicate
a state of more flexibility in autonomic modulation.
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Fig. 2. Boxplot of the transfer entropy Tr→R (left) and self entropy SR (right) during spontaneous breathing and breathing at 12 and 6 cpm with i/e
ratios of 0.42 (low) and 2.33 (high). * indicates significant differences between a low and high i/e ratio.

Fig. 3. Boxplot of the cross entropy Cr→R (left) and conditional self entropy SR|r (right) during spontaneous breathing and breathing at 12 and 6 cpm
with i/e ratios of 0.42 (low) and 2.33 (high).

V. CONCLUSION

This paper evaluated two ways to assess information
storage and transfer during controlled breathing. The results
revealed that opposed to the traditionally used transfer en-
tropy, in cardiorespiratory applications, the cross entropy is
a better way to quantify information transfer as it does not
condition on the past of the heart rate, thereby exploiting
the causal relation between respiration and heart rate. In
addition, we found that slow breathing can be associated with
an increased cardiorespiratory coupling and reduced residual
self predictability of the tachogram, suggesting why slow
breathing is an effective method to enhance vagal activation.
Additionally, beneficial effects of controlled breathing can
already be observed compared to spontaneous breathing.
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[4] T. Ritz, M. Thöns and B. Dahme, Modulation of Respiratory Sinus
Arrhythmia by Respiration Rate and Volume: Stability across Posture
and Volume Variations, Psychophysiology, vol. 38, no. 5, pp. 858-862,
2001.

[5] I. Van Diest, K. Verstappen, A. E. Aubert, D. Widjaja, D. Vansteenwe-
gen and E.Vlemincx, Inhalation/exhalation Ratio modulates the Effect
of Slow Breathing on Heart Rate Variability and Relaxation, under
revision in Applied Psychophysiology and Biofeedback.

[6] J. P. Saul, R. D. Berger, M. H. Chen and R. J. Cohen, Transfer function
analysis of autonomic regulation II. Respiratory sinus arrhythmia,
American Journal of Physiology-Heart and Circulatory Physiology,
vol. 256, no. 1, pp. H153-H161, 1989.

[7] L. Faes, G. Nollo and A. Porta, Information Domain Approach to
the Investigation of Cardio-Vascular, Cardio-Pulmonary, and Casculo-
Pulmonary Causal Couplings, Frontiers in Physiology, vol. 2, pp. 80,
2011.

[8] D. Kugiumtzis, Direct-coupling information measure from nonuniform
embedding, Physical Review E, vol. 87, no. 6, pp. 062918, 2013.
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