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Abstract— Estimating the connectivity between magnetoen-
cephalogram (MEG) signals provides an excellent opportunity
to analyze whole brain functional integration across a spectrum
of conditions from health to disease. For this purpose, spectral
coherence has been used widely as an easy-to-interpret metric
of signal coupling. However, a number of systematic effects may
influence the estimations of spectral coherence and subsequent
inferences about brain activity. In this pilot study, we focus on
the potentially confounding effects of the field spread and the
on-going dynamic temporal variability inherent in the signals.
We propose two simple post-processing approaches to account
for these: 1) a jack-knife procedure to account for the variance
in the estimation of spectral coherence; and 2) a detrending
technique to reduce its dependence on sensor proximity. We
illustrate the effect of these techniques in the estimation of
MEG spectral coherence in the α band for 36 patients with
Alzheimer’s disease and 26 control subjects.

I. INTRODUCTION

The brain activity can be recorded non-invasively by
means of the electroencephalogram (EEG) and magnetoen-
cephalogram (MEG). These recordings have high temporal
resolution, orders of magnitude better than other methods
for quantifying cerebral activity such as positron emission
tomography or functional magnetic resonance imaging. In
addition, the MEG is reference-free and less affected by the
extra-cerebral tissues than the EEG [1].

Traditionally, EEG and MEG data have been analyzed
on a channel-by-channel basis [2], [3]. By focusing on the
characteristics of individual channels and ignoring their inter-
action, these approaches have limited ability to characterise
whole-brain function and they fail to capture the charac-
teristics of functional integration, which refers to statistical
dependencies, or coupling, between spatially distinct brain
signals [4]. There is growing evidence that the evaluation
of functional integration in EEG and MEG may help in the
characterization of pathology and other brain conditions [5].

Functional integration has traditionally been assessed us-
ing spectral coherence, coh(·), a widespread metric that
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assesses linear dependences between two signals via the fre-
quency domain [5], [6]. Spectral coherence suffers, however,
from bias as a result of field spread. Various other functional
integration metrics have been proposed as alternatives (e.g.,
phase lag index, PSI) [7], [8]. Nevertheless, the results of
spectral coherence are highly correlated with those of many
other functional integration metrics used in the literature [5].
This fact, together with its simplicity of interpretation, still
makes spectral coherence a relevant option for the estimation
of brain functional integration in disease and mental states.

In addition, recent evidence suggests that the characteris-
tics of resting state functional integration change dynamically
with time [4], [9]. This fact may introduce a certain level of
variability in the dominating pattern of functional integration
associated with resting state. Furthermore, previous analyses
have suggested that the features computed from MEG activ-
ity of Alzheimer’s disease (AD) patients might have different
levels of variability (as measured by standard deviation, SD)
in comparison with those of control subjects [10].

Considering these facts, we theorize that functional in-
tegration derived from MEG signals using some coupling
metric C may contain contributions from several under-
lying effects. To make this more specific, consider the
ordered set of acquired MEG signals X ∈ {xk,n ∈ R} with
k ∈ [1, . . . , NChannels] and n ∈ [1, . . . , NSamples] where
NChannels, NSamples denote the total number of MEG
channels and samples acquired at a sampling frequency Fs,
respectively. We assume that the functional integration, as
estimated by C, ‘encodes’, as a function g[·], the following:

CMeas(i, j, f) = ...

g[CCon(i, j, f), CExp(i, j, f), CDist(i, j, f)] + ε,
(1)

where CMeas(i, j, f) is the measured functional integra-
tion, ε accounts for effects external to this model, and
CCon(i, j, f), CExp(i, j, f), CDist(i, j, f) represent the con-
tributions of the disease (or mental condition being evalu-
ated), the experimental paradigm (e.g., resting state and/or
variability in the signals), and the distance between sen-
sors (in relation to the field spread), respectively. i, j ∈
[1, . . . , NChannels] denote two distinct signals and f rep-
resents frequency.

Based on Eq. (1), we propose two simple post-processing
approaches to account for the confounding effects induced
in the estimated levels of functional integration (CMeas)
by the potential temporal variability in resting state activity
(CExp) and the field spread (CDist). These post-processing
approaches are based on applying a jack-knife procedure
to normalize the coupling values by estimations of their
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variance and on detrending the effect of inter-sensor distance
from the estimated functional integration levels.

These post-processing techniques can easily be applied to
already computed coupling metrics. We illustrate them by
analyzing the coh(·) in the α band (8Hz-13Hz) of resting
state MEG activity of 36 patients with AD and 26 control
subjects. AD is a particularly relevant disease for this study
due to its huge societal impact [11] and the fact that it has
been hypothesized to be a disconnection syndrome [6], [12].

II. MATERIALS

A. Subject groups

MEG resting state activity was acquired from 36 AD
patients and 26 age-matched controls (CON). All subjects
gave their informed consent for the research, which was
approved by the local ethics committee. Diagnoses were
confirmed with thorough tests. The mini-mental state exam-
ination (MMSE) was used to screen the cognitive status [6].

The 36 AD patients (24 females) met the criteria for proba-
ble AD according to the guidelines of the NINCDS-ADRDA
[13]. Their mean age and MMSE score were 74.06 ± 6.95
years and 18.06± 3.36, in that order (mean±SD).

The 26 CON subjects (17 females) were 71.77 ± 6.38
years old (mean±SD). Their MMSE score was 28.88±1.18
(mean±SD). The difference in age between groups was not
significant (p-value = 0.1911, Student’s t-test).

B. MEG Recordings

Resting state MEG activity was acquired with a 148-
channel whole-head magnetometer (MAGNES 2500 WH, 4D
Neuroimaging) in a magnetically shielded room at the MEG
Centre Dr. Pérez-Modrego (Spain). The subjects lied on a
patient bed with eyes closed in relaxed state. They were
asked to stay awake and not to move eyes and head. For
each participant, five minutes of MEG resting state activity
were recorded at Fs=169.54Hz. The signals were split into
epochs of 10s and visually inspected with the aid of an
automated thresholding procedure to discard epochs severely
contaminated with artefacts [6]. The cardiac artifact was
removed from the signals using a constraint blind source
separation procedure [14] to avoid bias in the computation
of signal coupling [6]. Finally, a bandpass FIR filter with
cut-offs at 1.5Hz and 40Hz was applied the recordings.

III. METHODS

We investigate the ability of spectral coherence,
coh(xu, xv, f), as a metric of functional integration between
two MEG channels, xu, xv ∈ X, computed in the α band
(f ∈ [8Hz, 13Hz]) to distinguish AD from CON subjects
with and without two post-processing stages that try to
account for the confounding effects hypothesized in Eq. (1).

We first compute coh(xu, xv, f) for each artefact-free
epoch of each subject [5], [6] as indicated in Section III-A.
Then, we apply two different post-processing schemes. The
first one, described in Section III-B, is a jack-knife approach
to normalize the values of coh(xu, xv, f). The second,

described in Section III-C, tries to counteract the dependence
of coh(xu, xv, f) on the distance between channels, u, v.

After each stage, we evaluate the ability to discriminate
AD from CON subjects via the p-values of a Mann-Whitney
U-test for each pair of channels adjusted for False Discovery
Rate (FDR) to account for multiple tests [16].

A. Computation of spectral coherence

Spectral coherence – coh(xu, xv, f) – is a widespread
and easy-to-interpret measure of brain synchrony [5], [6].
It measures linear correlation between two time-series (xu,
xv) as a function of frequency. Its values range from 0 (no
correlation) to 1 (maximum correlation). coh(xu, xv, f) esti-
mates linear synchrony between signals but it cannot discern
the direction of the coupling [5], [6]. It is strongly correlated
with other commonly used synchronization metrics [5].

To calculate spectral coherence, two time series of equal
length – xu and xv – are split into B equal blocks of 2s
each with 50% overlap. It is then estimated via:

coh(xu, xv, f) =
|〈Xu(f)X

∗
v (f)〉|2

|〈Xu(f)〉||〈Xv(f)〉|
, (2)

where Xu(f) and Xv(f) are the frequency spectra of xu, xv ,
respectively (including a Hanning window to each block). ∗

indicates complex conjugate, |·| is magnitude, and 〈·〉 denotes
averaging over the B blocks [5], [6]. The computations were
carried out using FieldTrip [15].

B. Jack-knife for variability estimation

Jack-knife is a procedure similar to bootstrapping to
estimate the variance of a statistic. It was proposed to
normalise the estimations of the PSI in [8]. We use a
similar approach to take into account the variability across
signal epochs that may be present due to changes in the
experimental conditions – conceptualized in CExp(i, j, f) in
Eq. (1). This leads to normalized values of spectral coherence
– cohNorm(xu, xv, f) – as follows:

cohNorm(xu, xv, f) =
coh(xu, xv, f)

std[coh(xu, xv, f)]
, (3)

where coh(xu, xv, f) refers to the average value of
spectral coherence across all epochs of a subject and
std[coh(xu, xv, f)] is the standard deviation computed with
a jack-knife approach [8]. This is done by creating as
many replicates, cohe(xu, xv, f), of the spectral coherence
as artifact-free epochs in the data, E, each of which has
the eth epoch removed. std[coh(xu, xv, f)] is calculated as√
Eσ with σ being the standard deviation of the set of

cohe(xu, xv, f) [8].

C. Detrending

Detrending refers to the process of removing a slowly
varying trend from a quantity. In the field of biomedical sig-
nal processing, detrending is used to remove slowly varying
components from signals such as the electrocardiogram [17]
and the EEG [18]. This is usually done by fitting a low
order polynom to the data and then subtracting the trend

6346



represented by the polynom from it. In this study, we employ
the idea of detrending to remove the spatial cofactor between
the coherence of any two xu, xv ∈ X that may appear in the
results due to the field spread.

The proposed algorithm requires knowledge of the phys-
ical locations of the u, v MEG sensors. Assuming that this
is provided in some L ∈

{
lk ∈ R3, k ∈ [1, . . . , NChannels]

}
,

the coherence estimates are detrended as follows:

Algorithm 1 Spectral coherence detrending
Input: X, L, f
Output: W {Detrended values}
S ← {u×NChannels + v ∀ u, v ∈ [1, . . . , NChannels]}
M ← {ms = coh(xu, xv, f), s ∈ S, x ∈ X}
D ← {ds = ‖lu − lv‖, s ∈ S, l ∈ L}
q ← polyfit(D,M, 7)
W← {wu,v = ms − polyval(q, ds), s ∈ S,m ∈M,d ∈ D}
return W

The functions polyfit(D,M, order) and polyval(q, ds)
abstract the fitting of a polynomial (q) of some order order
and its evaluation at some ds, respectively. Here, order =
7� N2

Channels as 7th order was deemed satisfactory for the
purposes of this study after visual inspection of the prevailing
form of the relationship between distance and coh(xu, xv, f)
averaged over the CON subjects.

It is possible to apply Algorithm 1 to each individual
subject in an attempt to counteract the CDist effect in Eq. (1).
However, in this study, we adopt the alternative approach of
deriving a q from the average coherence estimates (M ) of
all CON subjects and then use it to detrend both AD and
CON subsets because the effect of disease on coherence
(CCon) seems to be weaker than the effect of distance
(CDist). In this way, we try to reduce the effect of sensor
proximity but still maintain the differentiating elements in
the connectivity patterns across the groups. Computing the
polynomial fitting from all CON subjects has the added
benefit of providing a detrending polynom that could be
applied without modification to other clinical populations.

IV. RESULTS AND DISCUSSION

The effect of the post-processing was evaluated via a set
of individual FDR-adjusted [16] Mann-Whitney U-tests.

The p-values for the differences in the level of
coh(xu, xv, f) in the α band at each pair of MEG channels
without any post-processing at all are shown in Fig. 1. The
differences are not significant for any pair of channels (light
and red colors indicate p-values > 0.05).

Similarly, Fig. 2 depicts the p-values for spectral coher-
ence after applying the jack-knife technique (i.e., cohNorm)
where, overall, the differences between subject groups are far
more pronounced (darker colors than in Fig. 1), with most
pairs of MEG channels having p-values < 0.05.

Fig. 3 depicts the dependence of spectral coherence on
sensor proximity for one CON subject in both previous
situations: without any post-processing (coh, top panel) and
with the jack-knife-based post-processing (cohNorm, bottom

Fig. 1. FDR-adjusted Mann-Whitney U-test p-values for spectral coher-
ence, coh(xu, xv , f), in the α band.

Fig. 2. FDR-adjusted Mann-Whitney U-test p-values for spectral coherence
after post-processing with jack-knife, cohNorm(xu, xv , f), in the α band.

Fig. 3. Example of the spectral coherence dependence on sensor proximity
without any post-processing (top) and after employing jack-knife (bottom)
for a CON subject in the α band. The polynomial fitting computed for that
CON subject is also illustrated as an example.
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Fig. 4. Example of the level of spectral coherence in the α band after
jack-knife only (left) and after jack-knife and detrending (right) for one
CON subject (lighter colors indicate higher coherence).

Fig. 5. FDR-adjusted Mann-Whitney U-test p-values for PSI in α.

panel). As expected, a strong proximity dependency can still
be observed after jack-knifing as this procedure does not
intend to tackle the effect of channel proximity. Fig. 3 also
depicts an example of the polynomial fitting that would have
been computed for that CON subject, as an example.

To account for this dependency, we applied detrending.
As the same detrending was applied to each pair of channels
for all subjects, the p-values for differences between subject
groups are the same as in Fig. 2. Nonetheless, detrending
may still be valuable in reducing spurious highly correlated
clusters of closely placed sensors and, thereby, in improving
whole-brain analysis using graph theory (as in [4]). Indicative
global changes of coupling between all channels are illus-
trated in Fig. 4 for the same subject as depicted in Fig. 3.

Compared to other coupling metrics such as PSI, our
results suggest that the post-processed spectral coherence
might be sensitive to differences between AD and CON
subjects, as this dementia affects the brain functional connec-
tivity [5], [6], [12]. The comparison with PSI is illustrated in
Fig. 5 which depicts the p-values for the PSI in the α band
(using the full method in [8]).

V. CONCLUSION

This pilot study described two straightforward post-
processing approaches that are here combined for the first
time to account for the confounding effects hypothesized
in Eq. (1). Jack-knifing seemed to enhance the differences
between subject groups (due to reducing the variability in

the coherence) whereas Detrending might improve whole-
brain graph theory analysis. Future analyses will try to
corroborate these findings applying graph theory analysis to
other spectral bands and diseases although we acknowledge
that they may be limited by the lack of ground truth.
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