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Abstract— An approach to the generation of super-resolution
(SR) images from fundoscopy images is proposed that is based
on the 3D registration of the original fundoscopy images. The
proposed approach utilizes a simple 3D registration method
to enable the application of conventional SR techniques which,
otherwise, employ 2D image registration. Qualitative and quan-
titative comparative evaluation shows that the obtained results
improve image definition and alleviate noise.

I. INTRODUCTION

Small vessel structure and function assessment can lead
to more accurate and timely diagnosis, whose common
denominator is vasculopathy i.e. hypertension, diabetes and
a number of autoimmune disorders [1]. Due to their minute
scale, small vessels are more sensitive to diseases that
affect the cardiovascular system. For this reason, the damage
on small vessels starts much earlier and, thus, its timely
detection is of diagnostic significance.

Small vessels are spread throughout the body, located in
all internal and external organs. Of them, the retina provides
an open and accessible window for assessing their condition.
Retinal small vessels can be imaged through fundoscopy, a
cost and time efficient and, most importantly, non-invasive
technique which is thereby suitable for screening. During the
fundoscopy examination, or more precisely fundus photog-
raphy, the subject rests his/her head on a chin rest. Thereby,
images acquired from the same eye are coarsely aligned due
to the approximately same accommodation of the eye relative
to the imaging sensor.

Examinations of vasculature condition involve the mea-
surement of vessel widths and, in particular, the relationship
between arterial and venular widths; a widely employed
pertinent metric is the Arteriolar-to-Venular diameter Ratio
(AVR) [2]. Improvement of the resolution and definition by
which retinal vessels are imaged is thus of interest because,
this way, pertinent diagnostic metrics can be more accurately
computed.

Super Resolution (SR) methods utilize multiple images of
the same scene acquired from slightly different viewpoints
to provide an image of higher resolution and definition; in
fundoscopy, imaging of the retina from slightly different
perspectives is inherent due to saccadic motion. The basis
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of SR methods is image registration, because it enables the
utilization of pixels from different images to be considered as
additional samplings of the same function. Most SR methods
treat the problem of combining multiple images in a 2D
context [3], [4], [5]. This has been also the case in the appli-
cation of SR methods in retinal images [6], [7]. That is, the
underlying registration method considers only 2D translation
and rotation, assuming that perspective differences across
images are negligible. Although that there exist retinal image
registration methods which account for the 3D geometry of
the retinal surface [8], [9], [10], [11], [12], [13], [14], [15],
to the best of our knowledge, they have not been employed
in the problem of SR. Not related to retinal imaging, the
work in [16] considers surface orientation and camera pose
but only for 3D surface patches rather than entire surfaces.

In this work, we suggest that by considering perspective
differences and without requiring camera calibration, better
SR images can be obtained by conventional SR methods. As
an initial step, we approximate the retinal region of interest
to be planar and thereby use a homography as a basis for 3D
image registration. Indeed, the retina is not a planar surface
however the region of interest for computing the metrics such
as the AVR is limited to 10-15 degrees of visual angle where
the planarity assumption is sufficient. We acknowledge that
accounting for the 3D structure of the retina would lead to
even better image registration and, in turn, SR images; we
regard this as a next future step of this work. However, as
discussed in Sec. IV solving for the 3D eye structure would
additionally require camera calibration. Our argument is that
since we can obtain better SR images with homography-
based 3D registration, as opposed to existing SR methods that
perform 2D image registration, results would only improve
if 3D registration is further improved by solving for the 3D
structure of the eye and the camera parameters.

II. METHOD

The proposed method operates on a set of images, of the
same eye. One of these images is selected as the reference.
Assuming that approximately the same eye region appears in
all of them, currently this selection is arbitrary, i.e. the first.
Typically, color images are available, from which only the
“green” channel is utilized, being the one offering a higher
contrast in fundoscopy [17].

Keypoint features are detected in all images and matched
with those found in the reference image establishing poten-
tial correspondences. Several keypoint descriptors, including
SIFT [18] were evaluated for the task using their OpenCV
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Fig. 1. Registration of retinal images. Keypoint matches (left, middle) and superimposition of the registered images (right).

implementations1. In accordance to findings in the literature
[19], [20] and to our own observations, we selected SURF
[21] mainly due to their improved robustness to spurious
matches, as well as their localization accuracy. In addition,
though SIFT features are reported to be more in generic
datasets [22], in our case we found that the amount of key-
points found by SURF in retinal images is larger. Matching is
performed conventionally as in [18], requiring a high (> 0.8)
Nearest Neighbor Distance Ratio to establish a match. Input
images are coarsely aligned due to the accommodation of
the subject’s head with the modality’s chin rest (see Sec. I).
Thereby, a preliminary spurious-match rejection is simple to
achieve based on the relative locations of keypoints that are
considered for matching, without risking the omission of a
correct match. This rejection facilitates the robustness of the
next step of the proposed method, as it simplifies the robust
estimation of the pursued homography.

A homography Hi is established between the reference
image and each image i in the set. A homography is a
perspective transformation between two planes and is rep-
resented by a 3 × 3 matrix H . A homogeneous 2D point
upon the first plane, let x = [x y 1]T is transformed to occur
at its corresponding location on the second plane as H · x,
where · denotes matrix multiplication. In our case, the two
planes are the reference and the image to be registered. For
the reference image i = 0, H0 is the identity matrix.

Each homography Hi is estimated robustly to eliminate
remaining false matches. A RANSAC [23] process is em-
ployed for this purpose and the final result is availed by
least-squares fitting of the homography to the inliers of the
consensus. The least squares solution is found by application
of the Levenberg-Marquardt algorithm [24].

Based on the estimated homography Hi, image i is warped
to be registered to the reference image, as follows. For each
point x of the reference image, its corresponding point in
the registered image is x′ = H−1 · x. As point x′ typically
occurs at non-integer coordinates, its intensity value is found
by bicubic interpolation of the original image registered to

1http://www.opencv.org/

the reference one. The operation is demonstrated in Fig. 1.
The general model of the SR problem states that a given

image captured by a device, is a noisy, blurred and down-
sampled representation of a scene. Via a combination of
multiple images of the same scene, a closer version of
the scene can be reconstructed in a SR image [25]. The
prerequisite for such an operation is a registration mapping
across the input images, in order for the multiple samples
to be spatially combined. The resulting image is provided
at a higher resolution than the original. The increment in
resolution is called the scaling factor. It is worth noting that
if the scaling factor is n, and l is the number of images, if
l < n2 the problem is undetermined, if l = n2 it is a square
problem, and if l > n2 the problem is overdetermined [26].

Once the registration between the reference and the rest of
the images has been determined, conventional SR methods
can be applied. We have comparatively evaluated pertinent
methods for the, last, SR step of the proposed method
[3], [4], [5], [27] and selected [27] because it yielded the
relatively better results in terms of image quality, as well as,
execution speed (see Sec. III-C). In other words, the proposed
improvement stems from the registration stage that occurs in
3D (homography) instead of 2D (translation and rotation),
while the proposed approach allows for employing the SR
approach of choice.

III. EXPERIMENTS

The experiments targeted the evaluation of the proposed
method in the following respects. First, the accuracy of
homography-based registration was evaluated, in order to
investigate if it is sufficient for applying SR. Second, the
quality of the obtained SR images based on 2D registra-
tion and the proposed 3D registration is compared. Third,
candidate SR methods were evaluated as to which one
provides an image of better definition. In the experiments,
we also compare the results of the evaluated SR methods to
the magnification of the reference image (based on bicubic
interpolation) to indicate the improvement in image quality
over conventional image interpolation.
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Bicubic
Interpolation

[27] [29] [30] [31]

Time (s) 0.5 3252 18956 22265 6210

TABLE I
TIME (IN SECONDS) FOR PERFORMING SUPER RESOLUTION ON A

2912× 2912 PIXELS IMAGE. BICUBIC INTERPOLATION WAS

PERFORMED USING ONLY 1 IMAGE. THE REST, USING 9 IMAGES EACH.

All experiments were conducted on a conventional PC
with an i7-4770 CPU, at 3.40GHz and 16GB of RAM.
Computational time was dominated by application of the
evaluated SR methods, while the duration of SURF feature
matching and image registration was less than 1 sec. For the
SR methods, their MATLAB implementation in [28] was
utilized2. Execution times for the generation of a SR image
with scaling factor 3 from 2912× 2912 pixels are shown in
Table I. Bicubic interpolation was performed using only 1
image, and [27], [29], [30], and [31], using 9 images each.
Methods [6], [7] fall in the same category as they also use
2D registration to enable a SR resolution technique, as the
above. We were unable to directly compare to these methods
as they utilize a greater amount of images (in the order of 1
or 2 hundred), also acquired by a different modality.

Three datasets have been used in the experiments. To
the best of our knowledge, a publicly available dataset of
multiple retinal images from the same person, eye, and
(approximate) time does not exist, hence we acquired three
datasets for our experiments. For each dataset, images were
obtained during a single session from the same eye of the
same person, while no preprocessing has been applied. The
first comprised of 9 fundus images acquired with a Nidek
AFC-210 fundus camera. Image resolution is 2912 × 2912
pixels and Field of View (FOV) was ≈ 45◦ in both dimen-
sions. The second dataset contains 16 images obtained with a
Heidelberg Flowmeter. The image resolution is 1536× 1480
pixels and a FOV of ≈ 30◦ in each dimension. The third
dataset contains 16 images obtained with a fundus camera.
Image resolution is 720×576 pixels and a FOV of ≈ 40◦ in
each dimension. The reference images for these two datasets
are shown in Fig. 2.

The datasets are comprised of only a few images as the ac-
quisition procedure, albeit non-invasive, if repeated induces
fatigue to the eye, due to the bright illumination source
that causes pupil contraction and in some cases lacrimation
(secretion of tears) that prevent the further acquisition of
fundus images.

A. Registration accuracy

To evaluate registration accuracy, we measured as registra-
tion error the distance of the corresponding points after reg-
istration. That is, for a homogeneous point x in a test image i
(i > 0) its location in the reference image, after registration,
is Hi · x. Let x′ the matching point in the reference image.
Then the measured error is ||x′−Hi ·x||. The measured error

2http://lcav.epfl.ch/software/superresolution

Fig. 2. Reference images for dataset 1 (top), 2 (middle) and 3 (bottom).
Marked regions with solid white line correspond to the image details shown
in Figs. 4, 5 and 6. The solid black line region in the top image corresponds
to the image detail in Fig. 3.
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Mean error std # matches
Dataset 1 0.4884 0.2451 81
Dataset 2 0.5851 0.2485 2621
Dataset 3 0.3875 0.2362 208

TABLE II
REGISTRATION ERROR AND STANDARD DEVIATION, IN PIXELS.

bears the consequences of spurious keypoint matches which
is, however, small due to the preliminary filtering in Sec. II.

It ought to be noted that if we were to use the ‘SURF-
established’ correspondences for the above purpose, then
error would be measured using the same correspondences
that were used to estimate the homography. In that case,
error computation would be biased. Hence independently
established correspondences are employed and, in particu-
lar, correspondences established through SIFT features. As
a verification, we ran the same experiment using SURF-
established correspondences to observe about half the error
(≈ 0.2 pixels), which we chose not to use in the evaluation.
The obtained mean errors and standard deviation are reported
in Table II, where it can observed that in this independently
chosen control points, we obtain a subpixel accuracy in the
registration. We, thereby, reason that registration accuracy
enables the application of SR methods.

B. Comparison of registration methods

In this experiment, we compare the proposed registration
method with other methods employed in the task of SR. The
purpose of the experiment is to indicate the advantage of
the proposed 3D, homography registration method over 2D
registration methods that are conventionally employed in the
task. Therefore we have employed the adopted SR method
[27] and varied the registration approach. Two different
experiments have been performed to quantitatively compare
the registration methods.

1) Signal-to-Noise Ratio: In the first experiment, the
Signal-to-Noise-Ratio (SNR) of the obtained images was
calculated, using as reference the first image of each dataset.
To indicate the role of the registration method more clearly,
and restrict potential confounding of the result due to the
combination of multiple images, only 4 images of the dataset
have been utilized. Those images have been previously scaled
with a scaling factor of 0.5. The SR scaling factor was 2
in all experiments, to generate a SR image of the same
size as the original images. This scaling factor also casts
the particular application of SR a square problem thereby
avoiding potential improvement of the result due to the use
of additional images. The purpose of this experiment is to
generate a SR image of the same size as the original images,
and to calculate the similarity between the SR image and
the original image via the SNR. The proposed, in Sec. II,
registration method was compared to [3], [4], [5] and [32].
In Fig. 3, the obtained results are compared in an image
detail, clearly indicating that the proposed 3D registration
approach has an advantage over 2D registration approaches
in this problem.

This work [4] [5] [3] [32]
Dataset 1 11.6335 7.9317 0.5670 8.2380 9.1917
Dataset 2 9.5344 7.6581 5.9235 8.0751 7.3038
Dataset 3 17.0561 17.7945 11.3587 17.7945 17.7945

TABLE III
SNR (IN DB) OF SR RESULTS, FOR THE EXPERIMENT OF SEC. III-B.

Dataset 1 This work [4] [5] [3] [32]
Mean 0.4884 16.8608 447.9505 17.1637 15.2349
Std 0.2451 9.6545 384.3768 11.1891 7.7316

TABLE IV
REGISTRATION ERROR AND STANDARD DEVIATION, IN PIXELS, FOR 81

CONTROL POINTS IN DATASET 1

Given the nature of the images of some datasets, in which
there are black frames that may bias the SNR calculation,
a comparison omitting the black areas has been performed.
The results (Table III) show that while in Dataset 3 (the one
with the smallest images), our proposed registration method
offers similar results as the existing ones, for Datasets 1
and 2 (where image sizes increases notably), our method
outperforms the rest.

2) Pixel error: In the second approach for quantitative
analysis, the independent control points calculated in Sec. III-
A have been used for calculating the mean error and standard
deviation of the 5 registration methods analyzed. The error
distances have been calculated for control points in each
image of the datasets. The results are reported in Tables IV,
V and VI and show the registration error, as the mean 2D
distance of the matched points after the registration with each
evaluated method. The proposed registration, outperforms the
other analyzed methods. In some cases, the increment in
improvement is in the order of tens of pixels, indicating that
the registration improvement is significant.

We note that the error, in the particular case of method
[5], is much greater than the rest of the methods. In that
method, the rotational component of registration was partic-
ularly erroneous, leading to very high inaccuracies at image
periphery.

Dataset 2 This work [4] [5] [3] [32]
Mean 0.5851 52.2144 319.3092 15.5748 6.4975
Std 0.2485 35.3212 347.2220 25.7937 4.0704

TABLE V
REGISTRATION ERROR AND STANDARD DEVIATION, IN PIXELS, FOR

2621 CONTROL POINTS IN DATASET 2

Dataset 3 This work [4] [5] [3] [32]
Mean 0.3875 5.2442 96.9436 7.2677 5.1491
Std 0.2362 2.8381 60.3513 3.2337 3.2980

TABLE VI
REGISTRATION ERROR AND STANDARD DEVIATION, IN PIXELS, FOR 208

CONTROL POINTS IN DATASET 3
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Fig. 3. Image registration comparison. SR 100× 100 pixel image detail results (see Fig. 2), using [27], comparing the proposed 3D registration method
to 2D registration methods. Showing the green channel to better show the results. Left to right: proposed method, [4], [5], [3] and [32].

C. Comparison of Super Resolution methods

In this experiment, we have registered images using the
proposed registration approach and compared the output of
the SR methods in [27], [29], [30], and [31]. The purpose of
the experiment was to select the SR approach to be adopted
by the proposed method. The comparison was performed by
qualitative inspection of the images.

To evaluate the results, the SR methods were applied to
the three sets of images. The experiment for dataset 1 was
performed with n = 3 and l = 9 as parameters. For datasets 2
and 3, n = 4 and l = 16 were the parameters used. Indicative
image details are shown in Figs. 4, 5 and 6. In the results,
we also provide the bicubic interpolation of the reference
image, by the same scaling factor, to indicate the contribution
of the SR method in image quality. It is observed that the
SR images exhibit less noise than both the original and the
scaled ones and that vessels appear better defined.

Based on thorough inspection of the results, we have
adopted the SR method [27] in the proposed approach.
Nevertheless, we stress that the benefit of the proposed
method stems from the, earlier, registration step. Thereby,
the technique thereafter employed to generate the SR result
can be substituted by more suitable according to imaging
modality or number of available images.

IV. CONCLUSIONS

A method for SR in fundoscopy images has been pro-
posed, which differs from existing approaches to retinal
image SR by the fact that it considers the perspective
differences between the combined images. To achieve this, a
3D registration method is employed, as a basis to combine
multiple images, which does not require camera calibration.

In the experiments, we show that the proposed image
registration method (a) provides subpixel accuracy and is,
thus, suitable for application in the generation of SR images
and (b) provides better image alignment than 2D registration
methods that are conventionally employed in this task and,
consequently, improve the quality of the obtained SR result.
In some cases, the increment in improvement is in the order
of tens of pixels, indicating that the registration improve-
ment is significant. Moreover, the obtained image alignment
provides a basis for the comparison of SR methods, which
we utilize to select the best performing SR to employ in
the context of this work. The obtained results provide better
image resolution and definition and, thus, could potentially

improve vessel segmentation and measurement in retinal
images. Such an assessment is part of our future work.

Although that our results improve state-of-the-art in SR
of retinal images, we acknowledge that there exists ample
room for improvement. Our next step would be to account
for the non-planar shape of the retinal surface during image
registration. However, in that case, camera calibration would
be required to accurately register images upon a non-planar
3D surface. Calibration of a fundus camera is a complex
task, for the following reasons. First, the fundus camera
contains several lenses, not just a single one. It also employs
an auto-focus function not allowing for consistent image
acquisition and, thereby, complicating calibration as multiple
focal lengths need to be solved for. Furthermore, the specific
fundus camera that we had access to does not allow for image
acquisition unless it detects an eye in front of it; thus, specific
equipment is required to perform the conventional grid-based
calibration [33]. To overcome such issues, camera calibration
could be estimated together with the shape of the imaged
surface (retina), following the research avenue proposed in
[10].

Another avenue of future work is to address the large
computational time, albeit in MATLAB, required for the
execution of SR. In this respect, we plan to capitalize
of the inherent per-pixel potential of parallelizing the SR
computation and utilize a programmable GPU approach to
accelerate computation.

Finally, we note that the fact that arterial shape undergoes
minor local changes due with heartbeat, is acknowledged.
Our intention is to address this phenomenon, also, in our
future work.
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Fig. 4. Qualitative comparison of SR methods using the proposed registration for datasets 1, in two 250× 250 pixel SR image details (see Fig. 2, top).
Showing the green channel to better show the results. Left to right: bicubic interpolation, [27], [29], [30], and [31].

Fig. 5. Qualitative comparison of SR methods using the proposed registration for datasets 2, in two 250×250 pixel SR image details (see Fig. 2, middle).
Left to right: bicubic interpolation, [27], [29], [30], and [31].
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