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Abstract— Retinal arteriovenous (AV) nicking is a precursor
for hypertension, stroke and other cardiovascular diseases. In
this paper, an effective method is proposed for the analysis
of retinal venular widths to automatically classify the severity
level of AV nicking. We use combination of intensity and edge
information of the vein to compute its widths. The widths at
various sections of the vein near the crossover point are then
utilized to train a random forest classifier to classify the severity
of AV nicking. We analyzed 47 color retinal images obtained
from two population based studies for quantitative evaluation
of the proposed method. We compare the detection accuracy of
our method with a recently published four class AV nicking
classification method. Our proposed method shows 64.51%
classification accuracy in-contrast to the reported classification
accuracy of 49.46% by the state of the art method.

I. INTRODUCTION

Retinal arterivenous nicking (AV nicking or AVN) can be
defined as the narrowing of venular calibre by a stiff artery
at their crossing point in response to a rise in the blood
pressure (i.e., hypertension) [1]. In colour retinal images,
AV nicking appears as a decrease in venular calibre at both
side of an artery vein cross-over point (Fig. 1). Different
research studies show that, AV nicking is strongly associated
with hypertension, systemic diseases and stroke [2], [3]. This
implies the importance of the quantification of AV nicking to
identify people who are at high risk of cardiovascular heart
disease.

(a) (b)

Fig. 1: Examples of AV crossing (a) AV nicking crossing;
(b) normal AV crossing.
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At present, AV nicking is manually graded in a subjective
and qualitative manner, which is highly time consuming and
depends on the grader’s expertise. Another problem of man-
ual grading is that more often the results are not reproducible.
Therefore, an automated system for the quantification of AV
nicking grading is highly required for large scale longitudinal
studies.

A few works have been done on the quantification of
AV nicking. Nguyen et al. [4] have proposed an auto-
mated method for the measurement of AV nicking, where
a continuous value is produced to represent the severity of
AV nicking. The continuous value provided by Nguyen’s
method is difficult to interpret. In addition, the widths are not
normalized in this work. Therefore, the AV nicking severity
score may vary depending on the variability of the vessel
width’s of different patient. In this method [4], vein widths
are directly computed from the segmented image which may
be influenced by the threshold value used in the binarization
stages. More precise width computation which is not affected
by the threshold value can produce more accurate AV nicking
measurement. In this paper, we propose a fully automated
method which can classify AV nicking from colour retinal
imaging. The main contributions of the proposed method
include:

• An fully automated AV nicking classification method,
which will produce better information to predict cardio-
vascular diseases by providing discrete classification of
AV nicking .

• A new width computation method is used for the precise
estimation of venular widths.

• A novel feature vector is proposed for enhanced feature
analysis and classification of AV nicking based on
venular widths and Random Forest (RF) classifier.

We compare the classification accuracy of our method with
the existing state of the art method where the classification
is performed on a four class problem (0=normal to 3=most
severe).

The rest of the paper is organized as follows. In Section II,
the technical details of the proposed method are described.
The dataset and experimental results are presented in Sec-
tion III and Section IV to demonstrate the performance of
the proposed method. Finally, the paper is concluded with
Section V.

II. METHODOLOGY

The overall framework of the proposed method is illus-
trated in Fig. 2. The system takes retinal image as input
and classifies the AV nicking severity level of crossover
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point. The system is divided into two main modules: the
Image Processing module and the Machine Learning module.
Image Processing module includes the task of retinal vessel
segmentation, AV crossover point detection, ROI selection,
artery vein classification, separation of venular segment,
vein edge and centreline refinement and width computation.
On the otherhand, Machine Learning module includes the
feature extraction from computed widhts, test and training
data creation and classification. Detail of each module of the
proposed method are presented in the following sub-sections
of the paper.

Fig. 2: The proposed AV nicking severity level classification
method.

A. IMAGE PROCESSING

1) Vessel Segmentation , Artery Vein Classification, Venu-
lar Segment Separation: We have applied multi-scale line
detection to segment the blood vessels and following this the
vessel crossover points are detected and arteries and veins are
classified [4] as shown in Fig. 3.

(a) (b)

(c) (d)

Fig. 3: Output images of the different steps of image pro-
cessing module (a) original Image; (b) region of interest;
(c) simplified segmentation of the AV crossover point; (d)
detection of venular segments.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Output images of the different steps of edge refine-
ment process (a) initial segmentation of vein segment; (b)
straightened vessel image after applying anisotropic Gaus-
sian smoothing, that image is created by stacking many im-
age profiles alongside one another; (c) subsequently another
filter is applied to approximate the second derivative com-
puted perpendicular to the vessel (i.e. horizontally); (d) here
gray pixels represent positive-to-negative and white pixels
represent negative-to-positive transitions; (e) the length of
each connected line is computed and only the longest lines
that fall close to the estimated vessel boundaries are pre-
served; (f) superimposition of the new edge on the original
green channel image.

2) Refinement of the Edge and Centreline of Venular Seg-
ment: The width of the venular segment plays an important
role in AV nicking measurement. To obtain more accurate
measurements, the venular widths are computed based on its
edge rather than the threshold given initial segmentation. The
steps of the edge detection and final selection are as follows:

• The average width of a venular segment is computed
from its intitial segmenation.

• A spline is fitted to smooth the centreline of the venular
segment. The centreline is computed from the initial
segmentation of venular segment.

• Using the Green channel image, the pixel intensity
profile is computed by applying linear interpolation to
find the normal points of spline fitted centreline points.
The length of the intensity profile is set as double of
the estimated average width so that it can cover the
whole vessel cross-section. The intensity profiles are
then stacked into one after another for the computational
simplicity. The intensity values of these profiles are then
smoothed by using a anisotropic Gaussian filter (Fig. 4b)
.

• To identify the edge points, we apply a filter proposed
in [7] to compute the second derivative perpendicular
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to the vessel (Fig. 4c). At the edge points there should
be change in the sign of second derivative. It can be
bright to dark (e.g. background to vessel) and dark to
bright (vessel to background). These zero crossing lines
are identified by using connected component labeling
(Fig. 4d).

• Finally, the most longest lines which are close to the
boundary of the intial segmentation is identified as the
vein edge (Fig. 4e). Detected edges are superimposed
on the green channel image in (Fig. 4f ).

3) Width Computation: For width computation we draw a
line perpendicular to each of the centreline pixel of the vein
segment. The Euclidean distance of the intersection points of
each perpendicular line and vein edge are estimated as the
vein widths. Fig. 5 shows the vein widths computed from
the initial vein segmentation and after the final detection of
the edge points.

(a) (b)

Fig. 5: (a) Widths of the vein segment based on initial
segmentation; (b) widths of the vein segment after the
refinement of the edge.

B. MACHINE LEARNING

1) Feature Extraction: In case of AV nicking, there is
a decrease in the venular widths near the crossover point
compared to the mean width of the full vein segment. Based
on this property, we create our feature set to classify AV
nicking. Let Wi represent the vein widths which are sorted
based on the Euclidean distance from the crossover point
and Crn (Fig. 6) represent the mean width of first n centre
points starting from the crossover point as Crn = 1

n Σn
i=1Wi.

If c (Fig. 6) is the middle point of the vessel centreline
then width distribution of the overall vessel is computed as
follows: MW = 1

s Σc+s/2
i=c−s/2Wi, (s is empirically set to 20). The

difference between Crn and MW at different scale is used to
classify AV nicking.

Fn =
MW −Crn

MW
,where,n = [10,20,30]

In this equation, the difference between MW and Crn is
normalized by MW , which makes our features less sensitive
to the variation of vein widths. We extract these features
from the vein widths given by initial segmentation and edge
refined segmentation. Along with the width difference at
three different scales, our feature set also includes mean and
standard deviation of the widths of the vein segment on both
sides of the crossover point.

Fig. 6: Illustration of the feature extraction process. Here
Cr10, Cr20 and Cr30 represent mean width of the first 10, 20
and 30 center points from the crossover point. MW represent
the mean width computed in 20 pixels window from the
middle (represented by C) of vein centerline.

2) Classification: We use Random Forest (RF) [5] to
classify the severity of each AV crossover point. Given a
set of training data consisting of N samples each of which is
a D−dimensional feature vector labelled as belonging to one
of C classes, a random forest contains a set of tree predictors
created from the training data. Each tree in the forest is
built from a bootstrap sample of the training data (that is,
a set of N samples chosen randomly, with replacement,
from the original data). The trees are built using a stan-
dard classication and regression tree (CART) algorithm [6].
However, rather than assessing all D− dimensions for the
optimal split at each tree node, only a random subset of
d < D−dimensions is considered. The trees are built to full
size (i.e. until a leaf is reached containing samples from
only one class) and are not pruned. During classification,
unseen feature vectors are classified independently by each
tree in the forest; each tree casts a unit class vote, and the
most popular class can be assigned to the input vector. We
empirically set the number of trees as 500 in our method.

III. DATASET

We use 47 high-resolution retinal images for the evaluation
of our study. The images are obtained from Blue Mountain
Eye Study (BMES) [8] and Singapore Malay Eye Study
(SiMES) [9]. The resolution of the retinal images of BMES
and SiMES study is 3888×2592 and 3072×2592. Images in
both studies are converted to 24-bit (8 bit for each color space
respectively red, green and blue without any enhancement).

From these images, 93 detected crossover points are
selected to evaluate the performance of the proposed method.
Each crossover point was manually graded by two experts at
the Centre for Eye Research Australia (Melbourne, Australia)
using 4 scale grading system (from 0=normal to 3=most
severe). Disagreement between graders are then reassessed
in a joint discussion, which resulted in a single grading for
each crossover point.

IV. EXPERIMENTAL RESULTS

For each AV crossover point we extract 8 features to train
the Random Forest (RF) classifier as discussed in section II-
B.1. Since, the classes are not evenly distributed, we use
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TABLE I: Confusion matrix for the predicted classification
of Nguyen et al. [4]. The rows represent manual classification
while columns represent automatic classification.

Actual/Predicted 0 1 2 3 Total

0 36 12 2 1 51
1 9 3 5 0 17
2 4 1 2 7 14
3 1 0 5 5 11

# Correct Pre. 36 3 2 5 46
Accuracy 70.58% 17.64% 14.28% 45.45% 49.46%

TABLE II: Confusion matrix for the predicted classification
of proposed method. The rows represent manual classifica-
tion while columns represent automatic classification.

Actual/Predicted 0 1 2 3 Total

0 40 10 1 0 51
1 8 5 2 2 17
2 4 1 6 3 14
3 1 0 1 9 11

# Correct Pre. 40 5 6 9 60
Accuracy 78.43% 29.41% 42.85% 81.81% 64.51%

leave-one-out cross-validation method for the evaluation of
the prediction accuracy. For one test case, we consider all
remaining cases as our training dataset. We follow similar
strategy for Nguyen et al. [4]. The AV nicking severity score
given by this method is used as a feature for the classification
of AV nicking level. Table I and II shows the confusion
matrix of the predicted classification of Nguyen et al. [4]
and proposed method. In each AV nicking severity level,
our method shows better classification accuracy compared
to the current method [4]. Among the 93 crossover points
our method correctly classifies 60 crossover points (accuracy
rate is 64.51%) which is significantly higher compared to the
classification accuracy of 49.46% shown by [4].

Fig. 7: Classification accuracy for symmetrical penalty.

As the classification of AV nicking level is a multi-
class classification problem with some similarity between the
classes ( for example, severity level 0 is close to severity level
1 ). Because of this reason, we use a new measurement to
compute how close our classification is to the manual clas-
sification. We give symmetric penalty for misclassification.
The cost function is computed by Eq. 1 and the average

classification score using this cost function is given by Eq. 2

Cost(α,Ai,Pi) = e−α×(Ai+1)×|Ai−Pi| (1)

S1 =
1
n

Σn
i=1Cost(α,Ai,Pi) (2)

Here, we are assigning more penalty for the misclassifica-
tion as the severity of AV nicking increase and penalties are
given in a symmetrical way. Fig. 7 shows the classification
accuracy S1 score of two methods at different values of α .
At α = 0 we are giving no penalty for misclassification and
hence, the accuracy is 1. As the value of α increases, the
accuracy starts to drop. At α = 2 we are getting the standard
classification accuracy. For all the non-zero values of α , our
method is showing better accuracy compared to Nguyen et
al. [4].

V. CONCLUSION

In this paper, we proposed an effective method for the
classification of AV nicking. The accuracy of the method
was evaluated on 93 AV crossover points which were graded
in 4 classes by two experienced ophthalmologists. In our
proposed method, the vein widths are precisely computed
using its edge and intensity information. The proposed
method showed 64.51% detection accuracy in classifying AV
nicking severity level (0=normal to 3=most severe) compared
to 49.46% showed by the current method [4]. The proposed
method provides a discrete quantification of AV nicking
which can help to study the relationship between AV nicking
and different diseases such as hypertension and stroke.
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