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Abstract— This paper proposes a classification technique for
daily base activity recognition for human monitoring during
physical therapy in home. The proposed method estimates
the foot motion using single inertial measurement unit, then
segments the motion into steps classify them by template-
matching as walking, stairs up or stairs down steps. The results
show a high accuracy of activity recognition. Unlike previous
works which are limited to activity recognition, the proposed
approach is more qualitative by providing similarity index of
any activity to its desired template which can be used to assess
subjects improvement.

I. INTRODUCTION

Human activity recognition (HAR) is one of the most
attractive fields of study in the areas of healthcare and
pervasive computing. Some of HAR applications in pervasive
healthcare include monitoring of patients undergoing phys-
ical therapies, care services for those having heart disease,
diabetes, obesity and dementia and also eldercare. Among
different measurement techniques in HAR, wearable sensors
are the most desirable solution because of their ubiquitous-
ness and unobtrusiveness nature [1].

Lara and Labrador has conducted a comprehensive litera-
ture review on HAR problem from technology, methods and
applications angles with concentration on wearable sensors
[1]. Zhou and Hu have also made a detailed study on
human motion tracking problem with focus on rehabilitation
subject, they have considered visual and non-visual sensors
and their specific advantages and deficiencies [2]. Hadjidj
et al. have reviewed different practical challenges of using
wireless multi-sensor HAR [3].

HAR methods can be categorized into feature-based [4]–
[6] and template-based [7]–[11] classifications. Feature based
HAR mostly use two types of statistical feature sets extracted
from a moving time window: 1- Non-directional features
such as mean, variance, energy, entropy and power spectral
density of the acceleration magnitude [4]. 2- Directional
features such as eigenvalues of dominant directions and
average velocities in heading and gravity directions [5]. Most
of template-based HARs use either manifolds learning [7],
[8] or gesture-string mapping that latter group simplifies the
classification to a string-matching problem [9]–[11].

Windowing effect is one of the main challenges in feature-
based HAR where, changing the size of time window and
overlap percentage may cause ambiguity in activity recog-
nition [1]. To overcome this problem, we segment motion
trajectories based on correlation analysis of speed profile
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with a set of predefined templates. This step is done prior
to motion classification. Each segmented data represents a
single foot step and doesn’t overlap with other segments.

Finally, the segmented data is classified into walking, stairs
up or stairs down based on template matching of position
and velocity profiles. Unlike previous works which are
limited to activity recognition, the proposed approach is more
qualitative by giving similarity index of any activity to its
desired template which can be used to measure the qualitative
progress of subjects activity. Although, this approach is used
to detect the foot motions, it has the potential to be used as a
general framework capable of detecting any predefined body
movements.

II. MATERIALS AND METHODS

The experiment consisted of 3 subjects who were in-
structed to perform 3 different activities (walking straight,
climbing stairs up and down). These activities were repeated
3 times and in total about 200 motion segments were
recorded for each subject. For data recording an Inertial
Measurement Unit (IMU) device consisting of 3 different
types of motion sensors was utilized. The motion sensors
included a tri-axial gyro with 16-bit resolution and +/-35
rad/sec range , a tri-axial accelerometer with 12-bit resolution
and +/-78.5 m/s2 range and one tri-axial magnetometer with
12-bit resolution and 8.1G range. The size of IMU device
was 642 cm3 and it was attached to a strap band tightened
around the shank of subject’s dominant leg as shown in Fig.1.
For each experiment, 9 set of data (3 axis accelerations,
angular velocities and magnetic fields) were recorded on a
micro SD card at a sampling rate of 256Hz. All the data
were recorded with respect to the body frame (xyz) shown
in Fig. 1.
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Fig. 1. Experimental setup and different coordinate system

III. DATA ANALYSIS

Block diagram of Fig. 2 shows different steps of the
proposed approach to convert raw data into classified ac-
tivity. In preprocessing stage, the raw data from sensors are
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converted to motion components such as acceleration (~a),
velocity (~v) and position vectors (~p) in world and tangential
frames. These motion components are then passed through
the recognition stage, where they are first segmented and
then classified using a template matching technique.
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Fig. 2. Block diagram representation of the proposed method

A. IMU Algorithm

An IMU algorithm is developed to obtain spatial orien-
tation of the body frame relative to the world frame. Let q
in (1) be a rotation quaternion that can rotate an arbitrary
position vector ~p around a given unit vector n̂ with an
angle of θ and result in ~p′ using (2) [12], [13]. Where, q̄
is quaternion conjugate of q.

q = cos(θ/2) + sin(θ/2)n̂ (1)
~p′ = q ~p q̄ (2)

Provided that the bases of the rotating body frame (xyz)
is obtained by applying (2) on the bases of the inertial
world frame (XYZ), any vector expressed in (xyz) can be
transferred to its equivalent representation in (XYZ) using
(3).

~pXY Z = q ~pxyz q̄ (3)

To obtain spatial orientation of the body frame relative to
the world frame, the quaternion is calculated in terms of raw
data by using an Extended Kalman Filter.

B. Kinematic Analysis

1) Calculation of Inertial Velocity and Position: After
obtaining the spatial orientation, body acceleration (~axyz) is
transferred to world acceleration ( ~aXY Z) using (3). A low
pass filter with cut-off frequency of 50 Hz is also applied to
remove noises.

In order to calculate world velocity vector, Eq.(4) can
be considered as the simplest approach where the standard
gravity acceleration (~g) is subtracted from the filtered ac-
celeration and integrated with respect to time. However,
numerical integral error is inevitable in this approach because
of the sensor noise, uncertainty in gravity acceleration and
computational error that lead to an inaccurate velocity vector.

~vXY Z =

∫ T

0

(
~afXY Z − gêZ

)
dt (4)

To avoid this problem, we use the only possible ob-
servation that is inferable when the motion is completely
stopped and there are very small changes in acceleration.
Zero velocity can be observed correctly when the magnitude
of acceleration approaches the standard gravity.

Therefore, an improvement to (4) can be obtained by
introducing a new linear system including normal noises
(N(.)) and a discrete observation (Y ) as described in (5)
and (6). Here, ε and Ts are acceleration and time thresholds
used to define zero velocity conditions. In our analysis we
used ε = 1m/s2 and Ts = 0.1s.{

d
dt~vXY Z = ~afXY Z − gêZ +N

(
~θ(t), σ2

a

)
Y = ~vXY Z +N

(
0, σ2

v

) (5)

Y = ~0 , ‖~aXY Z − gêZ‖ < E for ∆t < Ts (6)

Observation Y can represent two different states: 1) resting
states and 2) active states. Resting states are those with
continuously zero-observed speed and the active states are
those with continuously nonzero-observed speed values.

Let ith resting state starts at t0i and finishes at ti, then
following period would be the ith active state that starts at
ti and finishes at t0i+1. Assuming ~θi to be the mean value of
acceleration noise within ith active state, it can be estimated
via (8). A relatively accurate estimation of velocity vector
can then be obtained from piece-wise integration of (9) over
active states. The world position vector can also be obtained
by integrating the velocity vector over time.∫ t0i+1

ti

(
~afXY Z − ~θi

)
dt = ~vXY Z

(
t0i+1

)
− ~vXY Z (ti) = 0 (7)

~θi = 1
t0
i+1
−ti

∫ t0i+1

ti
~afXY Zdt (8)

~vXY Z(t) =
∫ t

ti
~afXY Zdt− ~θi (t− ti) , ti < t < t0i+1 (9)

2) Transferring Motions to the Tangential Frame: To
make the motion profiles independent from both the observer
and the orientation of sensor on the body, we transfer the
world motion profiles (velocity, acceleration and angular
velocity) to the tangential coordinate system. The tangential
coordinates as shown in Fig. 1 is defined by (êt, ên, êb) where
êt is a unit vector tangent to the motion trajectory and ên is
directed to center of curvature. All directions are calculated
with basic vector transformations.

A 2D projected position vector (PT , PZ), in each segment
is obtained in TZ. As it is shown in Fig.1, TZ plane is
composed of world-frame Z axis and a new axis T that is
a horizontal projection of the average of êt over a segment
period.

IV. MOTION RECOGNITION

A. Segmentation

Each Segment is defined as the part of motion between
two successive resting states. Equation (6) can be used
to determine segmentation by detecting the resting states.
However, in practice this is not a reliable approach and often
results in incorrect segmentation. The problem specially
occurs when two or three succeeding steps are observed
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as a single active state. To avoid this problem, a template
matching approach is applied on the velocity magnitude or
speed profile to find the segments of the motion. We use the
vector functions (VT,j) as the matching speed template in
segmentation as shown in (10).

VT,j =
1

2
− 1

2
cos

(
tπ

Nj

)
; t ∈ [0 2Nj ], j = 1, 2, 3 (10)

j value in (10) adjusts the acceleration and deceleration
magnitudes of the template such that for j = 1to3 can
approximately represent any motion with fast, normal, or
slow paste, respectively. In experiments, parameter Nj are
set in the range of 150 to 250 for all three fast to slow speed
templates.

The template matching for segmentation is done in two
steps. In the first step, the midpoint of each segment i∗

is found by maximizing the Pearson correlation Ci,j of a
moving time window Vi,j and each of the speed profile
templates VT,j as shown in (11). Vi,j is a time window of
size 2Nj centered at the ith sample of data. i∗ is the local
maximum values of Ci,j that finds the best velocity past (j
value) and the time window for segmentation such that the
peaks of velocity profile and template coincide on each other.

Ci,j =
cov〈Vi,j ,VT,j〉√

var〈Vi,j〉.var〈VT,j〉
(11)

i∗ = arg maxi,j(Ci,j), j = 1, 2, 3 (12)

In second step, the motion speed as well as the starting and
ending points of the segments are detected. For this purpose,
the sum of point-to-point Euclidean distance of each template
VT,j and its corresponding window Vi∗,j is calculated. j∗ is
the index of the template with the smallest distance (VT,j∗ )
that represent the motion speed. Finally, the length of the
best fitted template (2Nj∗ ) will be used to determine Sk

s =
i∗ −Nj∗ as the starting sample point and Sk

e = i∗ +Nj∗ as
the ending sample point of the kth template.

Using Sk
s and Sk

e , we may segment all other motion pro-
files such as tangential and normal accelerometers, angular
velocities, and world velocity and position vectors for further
analysis in the classification stage.

B. Classification of Motion Templates
In this section, we first introduce the motion templates

and classes, then propose a likelihood metric for template
matching.

Any pair consisting two arbitrary jointed components of
motion including time is considered as a motion template,
e.g. any segment of (||~v|| vs. time) trajectory is a template;
another template can be one segment of (an vs. at) trajectory.
However, some intermediate calculations are necessary to
constitute the templates. If an array of Motion Components
(M) is defined as (13), then vector M i

k can be defined as kth

segment of ith motion component as (14).

M = {time, ‖~v‖, at, an, vT , vZ , pT , pZ , . . .} (13)
M i

k =
[
M i(Sk

s ) . . .M i(Sk
e )
]

(14)

To remove the effect of the motion speed all templates
are normalized by (15). A motion template of (16) is finally

composed as a pair of two arbitrary normalized motion
components that is resampled to a certain number of sample
points.

M
′i
k =

Mi
k(p)−M

i
k(k)

max(Mi
k
)−min(Mi

k
)

(15)

T
(i,j)
k = (M

′i
k ,M

′j
k ), i 6= j (16)

Each class is assigned to a specific type of motion, for
example in the current study, we assign three classes to foot
motions such as straight walking , stairs up and stairs down
steps. Any of the templates belonging to a certain class is
expected to demonstrate a unique shape. This shape would
not be necessarily distinguishable by its appearance though,
it can be detected through distance scoring. An Euclidian
distance index of (17) similar to the 1-$ recognizer is used
to compare two motion templates [14]. Each time, T i,j

c is
one of the classifier templates.

d
(i,j)
k,c = ‖T (i,j)

k − T (i,j)
C ‖ (17)

To classify one unclassified template using some known
classifier templates, the class of that classifier template which
yields the highest likelihood score is assigned to the template.
A one-out method is used to classify the motion segments
at training in which three classifier templates from three
different classes are selected randomly at each training round.
At validation stage, templates with highest performance in
training are used as predefined classifier templates.

Throughout the classification process, motion segments are
categorized into different classes and level of similarity of
every segment to each class is obtained.

V. RESULTS

Kinematic output of the preprocessing step is shown in
Fig.3. This figure represents position coordinates of eight
walking cycles while the subject is moving on a circle.
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Fig. 3. XYZ coordinates subject foot while walking on a circle.

The results for the correlation matching between a sample
speed profile and speed template 2 are illustrated in Fig. 4.
The local maximum points are most probable place of peaks.

Four types of templates are used for classification pur-
poses. The accuracy of the classification for each template-
based classifier is shown in Table 1. The evaluation outputs
of the classifier based on (pT , pZ) and (vT , vZ) templates are
listed in Table 2, 3. These templates show strong capability in
classifying motion segments to their true classes. However,
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Fig. 4. Correlation coefficient between a speed profile and template 2.
Points with maximum correlation are marked by star as segments midpoint.

the first classifier have 94.30% accuracy and sometimes
cannot detect straight walking steps that happens for low
scoring value, the second classifier gives 99.70% accuracy in
detecting the same class. Templates for (pT , pZ) are shown
in Fig. 5. For testing purpose, some predefined trajectories
are used as classifying templates which are highlighted.

TABLE I
CLASSIFICATION RESULTS FOR CONSIDERED TEMPLATES

(pT , pZ) (vT , vZ) (t, at) (t, an) (at, an)

Accuracy(%) 96.89 99.80 82.43 73.99 82.06
Deviation(%) 5.09 1.56 10.87 10.87 10.87

TABLE II
CLASSIFICATION RESULTS FOR (pT , pZ) TEMPLATE

Walking Stairs Up Stairs Down Undetected
Walking 94.30% 0.08% 0.00% 5.62%

Stairs Up 0.00% 100.00% 0.00% 0.00%
Stairs Down 0.00% 0.00% 100.00% 0.00%

TABLE III
CLASSIFICATION RESULTS FOR (vT , vZ) TEMPLATE

Walking Stairs Up Stairs Down Undetected
Walking 99.70% 0.22% 0.08% 0.00%

Stairs Up 0.05% 99.95% 0.00% 0.00%
Stairs Down 0.00% 0.00% 100.00% 0.00%

VI. CONCLUSION

The proposed method can recognize the predefined foot
motions with a high accuracy close to 100% for position
template. The results comparing previous works show a
serious progress to approach to perfect classification by
using template matching. Templates including accelerations
components lead to lower accuracy which is probably be-
cause of high sensitivity to input noise which vanishes after
integration in velocity and position components. Although,
the preprocessing stage is not the main goal of study, its
performance has a major effect on the recognition stage. The
performance of preprocessing steps including IMU algorithm
and kinematic analysis can be evaluated in the quality of
results in the classification stage.
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