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Abstract— Orientation of human body segments is an 

important quantity in many biomechanical analyses. To get 

robust and drift-free 3-D orientation, raw data from miniature 

body worn MEMS-based inertial measurement units (IMU) 

should be blended in a Kalman filter. Aiming at less 

computational cost, this work presents a novel cascaded two-

step Kalman filter orientation estimation algorithm. Tilt angles 

are estimated in the first step of the proposed cascaded Kalman 

filter. The estimated tilt angles are passed to the second step of 

the filter for yaw angle calculation. The orientation results are 

benchmarked against the ones from a highly accurate tactical 

grade IMU. Experimental results reveal that the proposed 

algorithm provides robust orientation estimation in both 

kinematically and magnetically disturbed conditions. 

I. INTRODUCTION 

In many ambulatory biomechanical analyses, motion 

tracking of human body segments by accurate determination 

of each segment’s orientation is of key importance [1]-[2]. 

The diverse application of body segment motion tracking 

ranges from rehabilitation and physical medicine to sports 

science [3]-[4]. Recently, with the advances in MEMS 

technology, miniature inertial measurement units (IMU) 

have emerged for wearable motion capture technology. 

These wearable miniature IMU, which consist of 

accelerometers, gyroscopes and magnetometers, together 

with a sensor fusion algorithm, can be used to estimate 

accurate orientation of human body segments to monitor a 

person’s physical activities in daily life environment over an 

extended time period [5]-[6]. A 3-D orientation estimate can 

be obtained by integrating the angular velocities from the tri-

axial gyroscope, but, this causes unbounded orientation drift 

due to the gyroscope’s output noise. In order to compensate 

for this error, accelerometer and magnetometer are 

employed as the vertical (the gravity) and horizontal (the 

Earth’s magnetic field) references, respectively [5].  

To estimate the full 3-D orientation (roll, pitch, and yaw), 

most researchers have focused on fusing data from the above 

sensor triplets in a Kalman filter together with an 

optimization algorithm. The widely used optimization 

algorithms for this purpose, such as QUEST [4], O2OQ [5] 
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and G-N [1], provide the optimal orientation from 

accelerometer and magnetometer output vector for 

measurement update step in the Kalman filter. To use these 

optimization methods, it should be assumed that constant 

reference vector measurements (i.e. the gravity from the 

accelerometer and Earth magnetic field from the 

magnetometer) are available, which cannot be guaranteed 

[5]. To deal with this problem, most authors use a threshold-

based switching approach [7] or a vector selector algorithm 

[5] to ignore the perturbed acceleration and/or magnetic field 

measurement in the Kalman filter. In spite of their accuracy, 

these optimization algorithms have high computational 

costs. On the other hand, without employing such 

optimization, another method to estimate orientation in 

kinematically and/or magnetically disturbed conditions is to 

include acceleration model and magnetic field model in the 

orientation estimation Kalman filter. One complementary 

Kalman filter approach is presented in [8] for 2-D 

orientation estimation and is extended to 3-D orientation in 

[9].  

This paper introduces a novel fast two-step cascaded 

Kalman filter for orientation estimation without using 

optimization. The proposed algorithm uses two linear 

Kalman filters, consisting of a tilt angle (roll and pitch) 

Kalman filter followed by a yaw (heading) angle Kalman 

filter. The first step is based on our previous algorithm in 

[10], which uses the accelerometers’ output vector along 

with an acceleration model to accurately estimate the tilt 

angles. The second step extends our tilt angle algorithm to 

full 3-D orientation by a novel yaw angle estimation method. 

Using this proposed method, the effect of ferromagnetic 

disturbances is completely decoupled from the tilt angle 

estimation. Furthermore, the estimated tilt angles in the first 

step help to determine the yaw angle in the second step more 

accurately. 

II. METHOD 

A. Problem Definition 

The orientation of the sensor frame (the frame fixed to 

sensor) with respect to an inertial frame (the frame pointing 

to local East, North and Up directions) can be represented by 

a rotation matrix which maps a vector from the sensor frame  

to the inertial frame: 

  
     

    
  (1) 

where   is an arbitrary     vector and left superscripts   

and   represent the inertial and sensor frame respectively.   
  

is the     rotation matrix expressed as [10]: 
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where   and   are abbreviations for     and     

respectively;    (yaw),   (pitch) and   (roll) are the rotation 

angles about the  -,  -, and  - axes of the inertial frame 

respectively. Note that the last row of the rotation matrix is 

the unit gravity vector expressed in the sensor frame and is 

independent from yaw angle [10]. By estimating this row, 

roll and pitch (tilt) angles can be determined: 
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where      
  represents the i

th
 row and j

th
 column in rotation 

matrix   
 . Additionally, by estimating the first row in 

rotation matrix and having the tilt angles, yaw angle ( ) can 

be readily determined by: 
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In this work, a two-step cascaded Kalman filter is used to 

determine full 3-D orientation including tilt angles and yaw 

angle. In the first step, i.e. the tilt Kalman filter, gyroscope 

and accelerometer data are used along with an acceleration 

model, to estimate the last row of the orientation matrix in 

order to calculate the tilt angles. In the second step, 

gyroscope and magnetometer data are used along with the 

estimated tilt angles from the first step to accurately estimate 

the first row of the rotation matrix to determine the yaw 

angle. 

The structure of the tilt Kalman filter and the yaw Kalman 

filter is explained in the following sections. 

A. Tilt Kalman Filter  

The tilt Kalman filter is based on the algorithm presented 

in our previous work [10], which allows accurate 

determination of the roll and pitch angles under dynamic 

conditions. In this method, the measurements from the tri-

axial gyroscopes and tri-axial accelerometers are used in a 

Kalman filter to estimate the normalized gravity vector in 

the sensor frame (i.e., the third row of the rotation matrix 

  
 ) using the following system model equations [10]: 

 

  ( )     (   )   (   )     (   ) (5) 

  ( )     ( )   ( )     ( ) (6) 
 

In Eqs. (5) and (6),   ( )                     is the 

    state vetor for tilt angles Kalman filter at step  ;    is 

the state transition matrix and    is the process model noise 

vector     is the measurement vector (i.e. the normalized 

measured gravity vector in the sensor frame)     is the     

observation matrix; and    is the measurement model noise 

vector. The matrices in (5) and (6) can be calculated using 

the following equations [10]: 
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where  ̃  is the     skew symmetric matrix of tri-axial 

gyroscope measurements   ̃  is the     skew symmetric 

matrix of   ;   
 ( )   

 is the external acceleration error in the 

sensor frame;    and    are the gyroscope and 

accelerometer measurement noise vectors, which are 

assumed to be uncorrelated and zero-mean white Gaussian; 

the superscripts   and – stand for the “a posteriori” and the 

“a priori” estimates in the Kalman filter, respectively;    is a 

dimensionless constant between 0 and 1 that determines the 

cut-off frequency in the external acceleration model 

 (  ( ) 
      (   ) 

    ( ), with  ( ) being the time-

varying error of the external acceleration process model); 

  
 (   ) 

  is the gravity compensated external acceleration; 

and   is the norm of gravity vector.  

The measurement vector in Eq. (6) is calculated by [10]:  
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where   ( ) is the bias compensated output vector of the 

accelerometer.  

The process and measurement noise covariance matrices 

in the tilt Kalman filter,   (   ) and   ( ), are calculated 

using the following equations: 
 

  (   )      (   )   (   )  

        ̃ (   )    ̃ (   ) 
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where    is the covariance matrix of the gyroscope’s 

measurement noise which is defined as       
  . By 

assuming that the gyro noise variances are equal to   
  in the 

three axes,    is set to   
   . Similar to   ,    which is the 

covariance matrix of accelerometer’s measurement noise, is 

set to   
   .      is the covariance of the acceleration model 

and is set to       
 ‖   

 
 
 (   )‖

 
.  

Using the estimated normalized gravity vector in the 

sensor frame,    
 ( )                    

 , the desired roll ( ) 

and pitch ( ) angles are calculated using (3): 
 

 ( )       (
    

    
) ,  ( )       (

     

        ⁄
) (17) 

 

As illustrated in Fig. 1, these two tilt angles are the inputs to 

the second step, i.e. the yaw Kalman filter.  

B. Yaw Kalman Filter 

The yaw angle Kalman filter allows accurate 

determination of yaw angle under temporary ferromagnetic 

disturbances. In this Kalman filter, the measurements from 

tri-axial gyroscopes and tri-axial magnetometers and the 

known tilt angles are used to estimate the first row of the 

rotation matrix   
 . The system model equations are 

represented by: 
 

  ( )     (   )   (   )     (   ) (18) 

  ( )     ( )   ( )     ( ) (19) 

where   ( )                                    is 

the     state vetor for heading angle Kalman filter at step 

  and   ,    and    can be calculated as: 
 

   (   )         ̃ (   ) (20) 

   (   )     (  ̃ ( ))   (21) 

   ( )      (22) 
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Fig. 1. Overview of the proposed algorithm structure 
 

 

Fig. 2. Experimental setup: Xsens MTi-G-700 attached to reference  

IMU-FSAS 
 

To calculate the measurement vecor   ( ), roll, pitch and 

yaw angles at each step   are required. However, at each 

step, roll and pitch are already known from the tilt Kalman 

filter. Since these tilt angles are used in calculation of   ( ) 

for the measurement update of yaw Kalman filter, they are 

called ‘measured tilt angles’ and denoted by    and   . To 

get the ‘measured yaw angle’,    , for complete calculation 

of   ( ), magnetometer data is used in the following 

algorithm: 
 

1) The rotation matrix with respect to local horizontal 

plane,        
 , is calculated using the known tilt angles:  
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2) The output vector of the magnetometer,   , is rotated 

using the horizontal rotation matrix        
 . The rotated 

vector is expressed by   
    

 . The horizontal component of 

the rotated vector is located in the horizontal plane (East-

North plane) of the navigation frame. 
 

   
    

         
    

  (24) 
 

3) The measured yaw angle,   , is calculated as the angle 

between the horizontal component of      
  and that of the 

Earth’s magnetic field. 
 

Then,   ( ) can be calculated as: 
 

  ( )   (25) 

                                             
 

However, under  temporary magnetic disturbances, the 

magnetometer output vector cannot be trusted as reliable 

information. To avoid the effect of disturbed magnetic field 

on the estimated yaw angle, a threshold-based switching 

approach similar to the method in [8] is employed. In the 

threshold-based switching method, the measured magnetic 

field is tested for significant deviations from the local earth’s 

magnetic field. This validation test excludes the disturbed 

measurement by assigning a large measurement noise value 

in the yaw Kalman filter. As a result,   ( ), the 

measurement noise covariance matrix for the yaw Kalman 

filter is defined as: 
 

  ( )  

 {  
   

 

‖  ( )   ‖          |             |      

         
 

(26) 

where   
  is the magnetometer noise variance in each axis.      

is the current dip angle (i.e. the angle formed by the gravity 

vector and current magnetic field vector) and      is its initial 

value.    and      are the threshold values.  

Finally,   ( ) is defined similar to   ( ): 
 

  (   )         ̃ (   )     ̃ (   ) (27) 
 

Using the best estimate of   ( ) from yaw Kalman filter, 

  
 ( )                    

 , the best estimate for yaw angle 

( ) can be calculated as:  
 

 ( )       (
                

      ⁄
) (28) 

 

The structure of the proposed two-step algorithm is shown in 

Fig. 1. 

III. EXPERIMENTAL SETUP  

In order to evaluate the performance of the proposed 

algorithm, raw inertial and magnetic data from  

Xsens MTi-G-700 at the rate of 100 Hz are used. The 

reference system uses IMU-FSAS (tactical grade IMU with 

fiber optic gyroscopes and servo accelerometers) integrated 

in Novatel SPAN system with inertial explorer post 

processing software. Orientation accuracy of the reference 

system is 0.008     for the roll and pitch angles and 0.023 

    for the yaw angle. The MTi-G-700 is attached on top of 

the IMU-FSAS using double-sided adhesive tape and the 

whole system is fixed to an aluminum frame (Fig. 2). This 

frame goes into a backpack that is worn by subjects. The 

gyro noise variance   
  and the accelerometer noise variance 

  
  are obtained from static measurements and are set to 

          ⁄  and         ⁄ , respectively.    ,      and 

   are set to     ,    and 0.3, respectively.  

To examine the robustness of the algorithm against 

temporary ferromagnetic disturbance and medium to large 

human body accelerations, three different tests were 

performed. To be consistent with the output data of the 

reference system yaw angle is converted to heading angle. 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experiment 1: Ferromagnetic disturbance 

In this experiment, MTi-G-700 is left stationary for 120 s 

and the magnetic field is temporarily disturbed using an iron 

disk for 5 s, 10 s and 15 s intervals. The normalized 

magnitude of the magnetic field and the calculated heading 

angle with and without the threshold-based switching is 

shown in Fig. 3. As it can be seen in this figure, the 

proposed 
 
algorithm
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Fig. 3. Top: heading angle with and without threshold-based switching, 

Bottom: normalized magnetic field norm 

the disturbances and the estimated heading angle remains 

stable during temporary ferromagnetic disturbances.  A 

small heading drift can also be observed during the 

disturbance which is due to reliance of the algorithm on 

gyroscopes data. 

B. Experiment 2: Large acceleration with short duration 

To produce large acceleration, in this experiment, the 

subject is asked to wear the backpack and perform a vertical 

jump. Roll, pitch and heading angles along with the norm of 

the tri-axial accelerometer output vector during a typical 

vertical jump is shown in Fig. 4. As it can be seen in this 

figure, the acceleration norm is reached to a maximum of 40 

   ⁄ . However, the algorithm can accurately track 

orientation even in the presence of the large acceleration.   
 

 
 

Fig. 4. Roll, pitch and heading angles during a typical vertical jump 
 

 
 

Fig. 5. Roll, pitch and heading angles during a rollerblading experiment 

(The discontinuities in the heading angle curve is due to its range being 
from 0 to 360 deg) 

C. Experiment 3: Medium acceleration with long duration 

To evaluate performance of the proposed algorithm for a 

typical motion with low to medium level of acceleration, the 

subject is asked to rollerblade outdoors while carrying the 

backpack. The orientation results presented in Fig. 5 show 

that the estimated orientation is reasonably good during the 

entire test duration and no orientation drift is observed. 

V. CONCLUSION 

This work proposes the use of a cascaded two-step 

Kalman filter for human body orientation determination 

using MEMS inertial/magnetic sensors. In the first step, 

accelerometers’ data along with an acceleration model is used 

in a Kalman filter to accurately estimate tilt angles. In the 

second step, the estimated tilt angles along with 

magnetometers’ data are used in a Kalman filter along 

accurately track the yaw angle. The yaw Kalman filter 

employs threshold-based switching method to deal with 

short-term magnetic disturbances. In comparison to the most 

popular orientation estimation algorithms, the proposed 

method does not use optimization for orientation estimation, 

which makes it computationally more efficient. Additionally, 

because of its two-step structure, the tilt angles would not be 

affected by a perturbed magnetic field while the estimated tilt 

angles help to determine yaw angle more accurately. 

Experimental results show that the proposed algorithm can 

cover various ranges of human body motions and is robust 

against temporary magnetic disturbances.  
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