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Abstract—Working memory (WM) refers to the retention of 

information over a short period of time. Accumulated evidence 

showed that training WM would lead to beneficial effects in un-

trained tasks, which could be attributed to the strengthening of 

the functional connections between brain regions through 

repeated training task. In this proof of concept investigation, 

we applied a graph theoretical approach to analyze the early 

changes of functional connectivity from two subjects 

undergoing a spatial n-back WM training task for three 

continuous days. A significant decreased clustering coefficient 

and normalized shortest path length was revealed, suggesting a 

reduced local efficiency with an increased global efficiency 

after WM training. Our findings thereby provide insightful 

implications for understanding the mechanisms of brain 

dynamics in cognitive training.     

I. INTRODUCTION 

 Working memory (WM) refers to the retention of 

information over a brief period of time, a function that is of 

central importance for a wide range of cognitive tasks and 

for academic achievement [1]. Deficits of WM are typically 

considered the primary source of cognitive impairment in 

numerous special-needs populations (e.g., ageing) and have 

been observed in many neuropsychiatric conditions (for a 

review, see [2]). Considering the importance of WM, it is 

not surprising that attempts to improve WM have a long 

history.  

 In recent years, an increasing number of cognitive training 

studies have demonstrated not only improvements in the 

trained task but also untrained tasks [3], suggesting training-

induced plasticity in a common neural network for WM. 

Moreover, altered patterns of brain activity in the fronto-

parietal cortices during untrained cognitive tasks after WM 

training have been demonstrated [4, 5]. These studies have 

been useful in identifying neural markers of WM training 

effect. Nonetheless, they have not addressed the issue of 

what are the effects of WM training on whole neural 

networks. This is due mainly to the fact that analyses are 

usually carried out in a univariate fashion.   

 Rather than investigating the individual regions in 

isolation, the human brain can be considered as a large-scale 

network of interconnected brain regions – the human 

connectome. This connectome has the capability to provide 

fundamental insights into the organization and integration of 
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brain networks [6]. Through utilizing functional connectivity 

approach, Cole and colleagues demonstrated a central role 

for fronto-parietal cortices flexible hubs in cognitive control 

and adaptive implementation of task demands [7]. It has also 

been suggested that repeated co-activation of regions in 

cognitive training task could lead to the strengthening of the 

functional connections between them [8].    

 Graph theory is a natural framework for the mathematical 

representation of complex networks. Recently, graph theory 

has attracted considerable attention in brain network 

research because it provides a powerful way to 

quantitatively describe the segregation and integration of 

brain network form perspective of the topological 

organization [6]. Based upon the prior research on the WM 

training effect of functional connectivity, we are specifically 

interested in the topological changes of the functional 

connectivity brain networks during the WM training task. 

Moreover, several recent studies have revealed beneficial 

effects in both young [9] and old adults [10], with greater 

training gains for young participants [11]. Therefore, our 

secondary goal of the present study was to examine whether 

there would be differences of the functional connectivity 

network between young and old participants during WM 

training.  

II. METHODS AND MATERIALS 

A. Subjects 

Two healthy, right-handed individuals (young: 32 years, 

old: 60 years) recruited from the National University of 

Singapore, participated in the study. Written inform consent 

was obtained from each participant, and the study was 

approved by the Institutional Review Boards of the National 

University of Singapore.  

B. Training task 

For the training task, the spatial n-back task was adopted 

where squares at eight different locations were presented 

sequentially on a computer screen at a rate of 3 s (stimulus 

duration = 500 ms; inter-stimulus interval = 2500 ms) [12]. 

Participants were required to memorize a series of stimuli 

and their temporal order, update the list of recent items, and 

select the responses that corresponded to the previously 

observed stimuli, depending upon the n-back rule [3]. The 

level of the task would change according to the participants’ 

performance. The whole training task was conducted in three 

continuous days with two training sessions which comprised 

20 blocks consisting of 20+n trails. The duration of each 

block was about 1 min. A schematic figure with 3-back task 

was illustrated in Fig.1.  
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Fig.1. The spatial n-back task was used as the training task, a 3-

back condition was illustrated as an example.  

C. EEG recording and preprocessing 

EEG signals from 64 channels were recorded during the 

task, and digitized at a sample rate of 256 Hz using an ASA-

Lab system (ANT B.V., Netherlands). EEG activity was 

referenced to the average of both mastoids. Vertical EOG 

were recorded using two electrodes placed above and below 

the left eye. The recorded EEG signals were re-referenced to 

the average reference. Artifacts due to eye movements or 

significant muscle activity were removed offline via an 

independent component analysis approach [13]. The resulted 

signals were digitally band pass filtered with cut-off 

frequencies at 0.5 and 40 Hz. EEG data preprocessing were 

carried out with EEGLAB [14].  

D. Effective connectivity analysis  

Cortical effective connectivity is achieved through the 

computation of the partial directed coherence (PDC) [15]. 

PDC was selected in this work for its low computational 

complexity. Besides, PDC has been proved superior in 

analyzing the phase coupling among multichannel EEG 

signals for its ability of distinguishing direct and indirect 

causality flows [16]. The formulation and explanation of this 

method could be found in our previous papers [17, 18]. 

Briefly, PDC values can be derived from a multivariate 

autoregressive model of the multichannel EEG signals as:  
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where X(t) is an 64-dimensional time series, W(t) is a 

multivariate uncorrelated white noise vector,   r ijA a r  is 

an 64×64 coefficient matrix which could be estimated via 

Yule-Walker algorithm. p is the model order which is 

determined using the AIC criterion (p=10 in this study). 

Then the PDC from j
th

 channel to i
th

 channel could be 

calculated as:  
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where Aij(f) are the elements of the matrix A(f) (
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in the causality interaction estimation, a surrogate approach 

was employed to assess the significance of PDC for a given 

pair of EEG channels [19]. Briefly, time series from each 

ROI and each trial were transformed to the frequency 

domain by means of a Fourier transform. We multiplied the 

discrete Fourier transform of the data by random phases and 

performed the inverse transform to obtain the surrogate data. 

We then repeated the estimation of PDC values on these 

surrogate data. An empirical distribution of PDC spectra was 

obtained via performing the surrogate approach 100 times. 

The significance threshold was set at 0.05 (p<0.05) for each 

EEG channel-pair [19]. To further investigate the association 

between the training effect and different EEG frequency 

bands, PDC values within different frequency bands were 

further estimated for each block.  

E. Graph theory analysis 

Graph theory is a natural framework for the mathematical 

representation of complex networks. Recently, it has 

attracted considerable attention in brain network research 

because it provides a powerful way to quantitatively 

describe the segregation and integration of brain network 

from the topological perspective [20]. In this study, network 

metrics, i.e., weighted clustering coefficient, Cp, weighted 

shortest path length, Lp, normalized clustering coefficient, , 
normalized shortest path length, λ, and small-worldness, σ, 

were adopted to reveal the involvement of network 

efficiency. In this study, graph theory analysis was 

performed with Brain Connectivity Toolbox [21]. 

The clustering coefficient Ci of a node i is defined as: 
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where aij is the element from the asymmetry weighted PDC 

matrix and H is the adjacency matrix (Hij(i≠j)=1 for aij(i≠j)≠0). 

The weighted clustering coefficient, Cp, of a direct network 

is the average of the clustering coefficient over all nodes. 

The clustering coefficient is an index of local structure of a 

graph. In network, a path between node i and node j refers to 

an edge that directly connects them or a sequence of edges 

that link them through other nodes. Then the shortest path 

length between node i and j is defined as the minimum one 

of the sum of the edge lengths along all possible paths. 

Further, the shortest path length Lp of a weighed graph was 

defined as the mean of the shortest path length of all pairs of 

nodes. In this work, the reciprocal of the PDC weight (1/aij) 

was denoted as the length of an edge. A network with high 

Cp value has tightly connected local clusters and hence the 

loss of an individual node has an impact on the structure of 

the network. While Lp indicates how well integrated a graph 

is, and how easy it is to transport information or other 

entities in the network [6]. To examine the small-world 

properties, the normalized clustering coefficient, =Cp/Crand, 

and the normalized shortest path length, λ=Lp/Lrand, were 

computed, where Crand and Lrand denote the average weighted 

clustering coefficient and the average shortest path length of 

an ensemble of 100 surrogate random networks. These 

random networks were derived from the original brain 

network by randomly rewiring the edges between nodes 

while preserving the degree distribution and connectedness 

[22]. The small-worldness could be summarized from the 

normalized metrics as: σ=/λ. A real network is considered 

small-world if it meets the following criteria: 1  and 

λ≈1, or σ>1. In this work, the comparison of the topological 

architecture for the effective connectivity network were 

estimated at a specific sparsity scale S=15%, which captured 
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the connectivity backbone and maintained a fully-connected 

brain networks.   

F. Statistical analysis 

 To investigate the influence of training effect on the 

topology of the cortical connectivity network and to 

determine the between-group differences, we conducted a 

repeated-measure ANOVA, with training-day as within 

group factor (T) and group as between group factor (G). A 

value of p<0.05 was considered significant. All analyses 

were performed using the statistical software program SPSS 

for Windows, version 17.0 (IBM, Armonk, New York).   

III. RESULTS 

A. Behavioral results 

 Analysis of the training behavioral results revealed that 

both groups improved in their performance on the n-back 

WM task (Fig.2). Although the training effect in the old 

subject was also significant, young participant 

overperformed in the mean n-back levels throughout the 

whole training sessions. It is noteworthy mentioning that the 

mean n-back level could be well explained by a linear fitted 

function for both groups (young: p1=3.6, p2=1.4, R
2
=0.95; 

old: p1=1.7, p2=0.4, R
2
=0.99).  

 
Fig.2. Subject behavioral performance increase in the trained task. 

For three continuous training days, the mean level and the standard 

deviations of n achieved by the participants were presented.    

B. Network results  

We found that both participants demonstrated small-word 

organization of the effective connectivity network, as 

exemplified by  values were larger than 1, the λ indexes 

were nearly 1. Training effect on the network metrics were 

statistically estimated through a repeated ANOVA; and the 

results were summarized in Table I. For all four frequency 

bands, Cp, , and σ showed significantly training-day effect 

(p<0.05). In all frequency bands except delta, λ was also 

found to be significantly reduced after three days’ training. 

Significant group effect (p<0.05) was only observed in 

Alpha band, where old participant exhibit significantly 

smaller λ as well as higher Cp and  compared to young 

subject.  

Interestingly, significant training day by group interactions 

were revealed in λ in delta band and  in alpha band. Further 

investigation indicated that this interaction resulted from a 

significantly decreased of λ and  in old participant but an 

insignificant decrease in young participant.  

IV. DISCUSSION AND CONCLUSION 

 The human brain forms a large-scale interconnected 

structural network that functionally links adjacent and 

distant brain areas [23]. Such functional coupling is present 

during the processing of cognitive task and it is even present 

during rest. Recent advances in neuroimaging techniques 

and graph theory methods allow for the investigation of 

human brain networks from topological perspective and 

accumulated studies have shown that human brain networks 

have special topological organization, such as small-

worldness – an optimal brain network architecture 

characterized by high efficiency of information transfer with 

low wiring cost [6]. In this study, we employed graph 

theoretical analysis to investigate the changes in effective 

connectivity networks due to a short-term WM training task.   

Recently, Takeuchi and colleagues reported an altered 

structural connectivity patterns after two-month WM 

training, providing anatomical evidence that WM training 

could augment the human brain connectome [3]. Similar 

positive training effects were also observed in functional 

connectivity between regions with age-related disruption in 

cognitively relevant brain networks [24]. In the current 

work, significantly decreased clustering coefficients were 

revealed in all frequency bands, suggesting a reduced local 

efficiency after short-term WM training. Moreover, the 

normalized shortest path length showed statistical decreases, 

indicating a more global efficient configuration. According 

to the ’neural efficiency theory’ proposed by Haier [25], 

when participants are doing well on a task, they recruit fewer 

neurons than when they are not doing well. We speculate the 

decreased local clustering coefficients might attribute to the 

less local activation after WM training. However, the 

significant reduced shortest path length indicates a more 

efficient global information transformation in both groups 

after WM training. Group differences between young and 

old participant were mainly observed in alpha band. 

Compared to young subject, old participant exhibited more 

optimal small-world architecture with higher weighted 

clustering coefficient and less weighted shortest path length, 

indicating a higher gain for old people in the WM training 

task.      

 There are several issues that should be addressed. First, it 

could be argued that the outcome of the current study is not 

convincing for small subject size. While our study has 

revealed some consistent changes of the effective 

connectivity networks for both subjects after WM training, 

we did not intend to make any generalization and focused on 

the feasibility assessment of the connectivity approach in 

this proof of concept study. Further study involving a higher 

number of subjects is essential to replicate the observations. 

Second, the training period in the current work is three 

continuous days; an extension of the current work with long-

term training tasks is under consideration to evaluate the 

influence of training length. Finally, accumulating studies 

reported a key role of fronto-parietal cortex in the WM 

training. To reveal the training effect on a localized fashion,   
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TABLE I. COMPARISONS OF THE GLOBAL NETWORK MEASURES AT DIFFERENT FREQUENCY BANDS 

(SPARSITY=15%). 

Metrics 
Delta (0.5-4Hz) Theta (4-8Hz) Alpha (8-12Hz) Beta (12-30Hz) 

Training Group T×G Training Group T×G Training Group T×G Training Group T×G 

Cp 0.046 ns ns 0.012 ns ns 0.042 <0.01▲ ns <0.01 ns ns 

Lp ns ns ns ns ns ns ns ns ns ns ns ns 

 <0.01 ns ns <0.01 ns ns <0.01 0.048▲ 0.045 <0.01 ns ns 

λ ns ns <0.01 0.035 ns ns 0.012 <0.01▼ ns <0.01 ns ns 

σ <0.01 ns ns <0.01 ns ns <0.01 ns ns <0.01 ns ns 

Note: Cp = weighted clustering coefficient, Lp = weighted shortest path length,  = normalized clustering coefficient, λ = normalized 

shortest path length, and σ = small-worldness. T×G: training by group interactions. Bold indicates variables are statistically significant 

(p<0.05), ns, non-significant. , decreased with training; , increased with training; ▼, Old < Young, ▲, Old > Young.  

graph theory measures such as betweenness centrality and 

nodal strength, should be employed in the future.   

    In sum, we quantitatively analyzed the changes in small-

world properties of functional brain networks during WM 

training. Our results of global network metrics demonstrated 

more efficient network architectures after WM training. We 

interpret our finding as a proof of principle, providing 

insights on how the WM training benefits the brain 

connectome.     
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