
  

 

Abstract— Two algorithms for evaluating postural 

transitions (PTs) in cohorts of 40 healthy younger and 40 older 

adults are described and evaluated. The time of sit-to-stand 

(SiSt) and stand-to-sit (StSi) transitions and their duration were 

measured with two tri-axial accelerometers, one on the chest 

and one on the lower back. Each algorithm was optimized for 

these sensor placements. The first algorithm for sensor 

placement on the chest used a scalar product and vertical 

velocity estimates. The second algorithm for sensor placement 

on the lower back used a vector magnitude and a discrete 

wavelet transform. Both algorithms performed excellently in 

PT classification for younger and older adults (>86%). 

However, the chest based sensor and algorithm were better for 

estimating transition duration (TD) with ICCs to video analysis 

ranging from 0.678 to 0.969. 

 

I. INTRODUCTION 
Current research recommends the instrumentation of 

physical functioning tasks in clinical settings [1]. 
Instrumentation provides an objective and highly accurate 
means to test/retest individuals within or across studies. In 
addition instrumentation can be used to establish a standard 
approach for assessments thereby adopting a common 
currency with the potential to analyse data across studies and 
to facilitate the pooling of research findings [1, 2]. 
Traditional tests to assess physical functioning include 
standing balance for posture control, 2/6/10 minute walks for 
endurance and postural transitions for lower extremity 
strength. Postural transitions (PT) such as sitting-to-standing 
(SiSt) and standing-to-sitting (StSi) is a common physical 
task that can be performed many times each day and is a 
prerequisite for maintaining independent functioning [3]. 

The assessment of PT is useful clinically because PT 
variables are associated strongly with falls risk in healthy 
older adults and those with age-related pathologies [3-5]. 
Falling is the most common type of home accidents among 
elderly people [5]. Transition duration is a  key feature of 
SiSt or StSi that has been associated with falls (or falls risk) 
[3]. A number of studies have used various sensor 
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configurations (accelerometer with/without gyroscopes) and 
associated algorithms for both the detection of PT and for 
assessment of the duration of SiSt or StSi transitions [3, 5-7]. 
However, the use of a single sensor arrangement (leading to 
reduced size and cost) with a less complex algorithm remains 
the goal to facilitate replication and widespread use of such 
approaches in future studies [7, 8].  

In this paper, we describe two algorithms for evaluating 
the characteristics of a PT and compare them with a gold 
standard reference. In the first instance the algorithms were 
evaluated for their ability to classify a PT, either as a SiSt or 
StSi. Secondly, the accuracy of the algorithms for estimating 
transition duration (TD) times were evaluated and compared 
directly with timed recordings from video observations. 
Based on these analyses, we recommend the most suitable 
approach to instrumenting the assessment of PT in both 
healthy younger and older adults.  

II. METHODS 

A. Participants 
Forty healthy young adults aged 20-40 years (YHP) and 

forty healthy older adults (OHP) were recruited. Participants 
were recruited from staff and students at Newcastle 
University and members of Newcastle University 
VOICENorth, an older volunteer group who participate in 
research. Participants were recruited only if they had no 
physical or neurological disability that might impede their 
movement. All participants gave written informed consent 
and ethical consent was granted by the National Research 
Ethics Service (County Durham and Tees Valley). 

B. Equipment 
Each participant wore two Axivity AX3 accelerometer-

based sensors (Axivity, York, UK) - one located on the 
lower back (lumber vertebrae, L5) and one centrally on the 
sternum (chest), Figure 1(a). The sensors were held in place 
by double sided tape and Hypafix (BSN Medical Limited, 
Hull, UK). The sensors were programmed to capture at 100-
Hz (16-bit resolution) and at a range of ±8g. Recorded 
accelerations were stored locally on the sensor’s internal 
memory as a raw binary file that was downloaded upon the 
completion of each trial. Video recording was performed 
during each trial and used as the gold standard reference to 
validate the type of PT (SiSt or StSi) and the estimated TD 
from each algorithm.  

C. Experimental protocol 
Calibration of the tri-axial accelerometer was performed 

using previous methods as outlined by Ferraris et al [9] and 
has also been adopted in other studies [7, 10]. Briefly, 
participants were asked to remain still prior to the beginning 

A comparison of methods to detect postural transitions using a 

single tri-axial accelerometer 

Alan Godfrey-IEEE Member, Gillian Barry, John C. Mathers, and Lynn Rochester 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 6234



  

and at the end of each postural transition trial to account for 
any offsets in the accelerometer signal. A researcher used 
video play back to manually note the starting and end time of 
each PT, the gold standard. For the purposes of this study, 
the TD for SiSt was defined as the period from when the 
participant began to move their torso until they had reached a 
static state in an upright standing position. Conversely, StSi 
was defined as the period from when the participant began to 
move from a static upright position to the moment of 
equilibrium in a seating position. 

The participants performed 3 × SiSt and 3 × StSi trials 
from 2 different chairs of similar height: 

 Chair #1: height 41cm with arm rests. Height to arm 
rest 66cm. The participants were instructed to use 
the arm rests if they wished. 

 Chair #2: height 43cm with no arm rests.  

 

Figure 1.  (a) Attachment of the Axivity sensor to the chest and L5 and (b) 

the Axivity sensor with its dimansions 

D. Algorithms 

After testing, data were downloaded to a computer and 

analysed using a specially written MATLAB program. Two 

PT algorithms were implemented in this study, both 

optimised for specific sensor locations: one on the chest and 

one for the lower back (L5). The algorithms consisted of the 

following:  

 Chest: for the classification of a PT the VESPA algorithm 
was implemented [7]. This algorithm adopts two 
techniques: scalar product, the multiplication of a row (a) 
and column (b) vectors (1) and vertical velocity 
estimates, the numerical integration of the norm of the tri-
axial acceleration signals (ax, ay, az) after gravity is 
subtracted (2). To calculate TD, the time of the PT (tPT) 
is determined from the scalar product of the acceleration 
signals. The scalar product is used to estimate trunk tilt 
[7] for which purpose, gyroscopes have been used 
previously [5]. Once tPT was determined, TD was 
estimated from the time between the peaks immediately 
before/after tPT, Figure 2. Then to classify the type of PT 
(SiSt or StSi), the shape of the vertical velocity estimates 
around the time of tPT were examined [7]. 

        (1) 

(2) 

 L5: The second method used to detect and estimate TD 
was that described by Bidargaddi et al [6]. Firstly, this 
method calculated the signal vector magnitude (SVM) 
from a combination of all three axes of the accelerometer. 
Then in accordance with the algorithm, a discrete wavelet 
transform (DWT) was used to extract the 5

th
 order 

approximation of the SVM using a discrete Meyer 
(mother) wavelet, ψ, sampled at discrete point’s k and l 
(3). The TD was estimated from the time between the 
negative and positive peaks, Figure 3. Since that time is 
only half the duration required for TD, the estimates were 
multiplied by 2 to provide the final TD estimation. The 
type of PT was determined from the order of the peaks 
[6].  

 (3) 

 
Figure 2.  Estimation of tPT and TD time from the VESPA algorithm with 

the sensor located on the chest. In this example the PT was performed by a 

OHP using chair #1. 

 
Figure 3.  Estimation of half the TD time from the wavelet algorithm with 

the sensor location on L5. Here, the PT was performed by a YHP using 

chair #1. 

 

 

 

 

 

 

6235



  

E. Statistical analysis 
Mean and standard deviations were calculated for each 

PT trial for both YHP and OHP. The normality of data 
distributions was tested with a Shapiro-Wilk test. Bland-
Altman plots were generated to provide a visual 
representation of agreement between systems 
(accelerometer-based estimates and those from the “gold 
standard” video recordings) by plotting the individual 
participant difference for the two systems against the mean 
estimate for that individual derived from both systems. 
Limits of agreement (LoA) between the gold standard 
reference (video) and sensor location with associated 
algorithm were expressed as intraclass correlation 
coefficients (ICCs) of type (2,k). Limits of agreement are 
expressed in absolute terms as well as percentage of the 
group mean. The statistical significance was set at p<0.05. 

III. RESULTS 
One L5 sensor failed to record in the YHP group and 3 (1 

chest and 2 L5) in the OHP group and, as a result, data for 
direct comparison between the systems were available from 
39 YHP and 37 OHP. Table I shows the participant 
characteristics. 

TABLE I.  PARTICIPANT CHARACTERISTICS 

Characteristic YHP (N=39) OHP (N=37) 

Gender (M/F) 20 / 19 14 / 23 

Age (years) 28.79 ± 5.29 63.07 ± 6.37 

Height (cm) 172.12 ± 8.81 166.14 ± 9.41 

Weight (kg) 72.81 ± 13.89 71.20 ± 15.17 

 

A. PT detection 

In total 117 (39 × 3) SiSt and StSi PT were performed by 

the YHP. The VESPA algorithm classified correctly 109 

(93.16%) SiSt and 115 (98.29%) StSi PT for chair 1 and 117 

(100.00%) SiSt and 116 (99.15%) StSi PT for chair 2. In 

contrast the Wavelet algorithm classified correctly 117 

(100.00%) SiSt and 116 (99.15%) StSi PT using chair 1 and 

113 (96.58%) SiSt and 111 (94.87%) StSi PT using chair 2. 

The OHP performed 111 (37 × 3) SiSt and StSi PT. The 

VESPA algorithm classified correctly 96 (86.49%) SiSt and 

108 (97.30%) StSi PT for chair 1 and 110 (99.10%) SiSt and 

110 (99.10%) StSi PT for chair 2. The wavelet algorithm 

classified correctly 104 (93.69%) SiSt and 103 (92.79%) 

StSi PT using chair 1 and 100 (90.09%) SiSt and 96 

(86.49%) StSi PT using chair 2. 

B. Limits of agreement 

Table II summarises the descriptive data obtained using 

the VESPA algorithm for the YHPS and OHP. There is 

excellent agreement between the video recording and the 

VESPA algorithm for the SiSt and StSi TD times for both 

chairs in the YHS group (ICCs, 0.918-0.969) while only 

moderate for the OHS (ICCs, 0.678-0.772). Mean 

differences (MD) showed there was a systematic over 

estimation of the TD times in both YHS and OHS. 

For the YHP, the range for the 95% limits of agreement 

is 0.8 (±0.40) seconds with LoA of between 18.3 and 26.9%, 

Figure 4(a). For the OHP, the 95% limits of agreement 

increased to almost 2.0 seconds with higher LoA ranging 

from 33.3 to 49.9%.  

TABLE II.  VESPA ALGORITHM: DESCRIPTIVE PT DATA FOR THE YHP 

AND OHP SHOWING THE MEAN AND STANDARD DEVIATION OF TD, MEAN 

DIFFERENCE (X̄) ± 95 % AND AGREEMENT BETWEEN SYSTEMS 

PT Video (s) VESPA (s) LoA x̄ ± 95% ICC 

YHP 

SiSt 1 1.39 ±0.30 1.47 ±0.39 25.4 0.08 ±0.36 0.918 

StSi 1 1.82 ±0.44 1.75 ±0.53 18.3 -0.06 ±0.33 0.965 

SiSt 2 1.46 ±0.36 1.54 ±0.47 26.9 0.07 ±0.40 0.931 

StSi 2 1.85 ±0.43 1.86 ±0.83 18.3 0.01 ±0.34 0.969 

OHP 

SiSt 1 1.37 ±0.31 1.52 ±0.38 43.0 0.16 ±0.62 0.707 

StSi 1 1.84 ±0.43 1.95 ±0.54 49.9 0.11 ±0.93 0.678 

SiSt 2 1.39 ±0.27 1.53 ±0.36 33.3 0.13 ±0.48 0.772 

StSi 2 1.75 ±0.34 1.80 ±0.45 39.9 0.04 ±0.70 0.754 

Table III summarises the descriptive data obtained using 
the wavelet algorithm for the YHP and OHP. There was 
weaker agreement between the results obtained using the 
video recording and this algorithm for the SiSt and StSi TD 
times for both chairs in the YHP group (ICCs, 0.363-0.538) 
and agreement  for the OHP group (ICCs, 0.144-0.523). In 
contrast with results from use of the VESPA algorithm, there 
was a systematic underestimation of TD times for both the 
YHP and OHP groups. 

For the YHP, the 95% limits of agreement ranged as high 
as 1.5 (±0.75) seconds with LoA of between 37.1 and 47.7%, 
Figure 4(b). For the OHP, the 95% limits of agreement 
increased to almost 2.0 seconds with higher LoA ranging 
from 41.7 to 58.2%. For all PT’s in both OHP and YHP, 
there were no clear differences in the type of chair used. 

TABLE III.  WAVELET ALGORITHM: DESCRIPTIVE PT DATA FOR THE YHS 

AND OHP SHOWING THE MEAN AND STANDARD DEVIATION OF TD, MEAN 

DIFFERENCE (X̄) ± 95 % AND AGREEMENT BETWEEN SYSTEMS 

PT Video (s) Wavelet (s) LoA x̄ ± 95% ICC 

YHP 

SiSt 1 1.39 ±0.30 1.36 ±0.16 37.1 -0.02 ±0.51 0.538 

StSi 1 1.82 ±0.44 1.52 ±0.28 45.4 -0.29 ±0.75 0.473 

SiSt 2 1.46 ±0.36 1.37 ±0.14 41.8 -0.09 ±0.59 0.479 

StSi 2 1.85 ±0.43 1.47 ±0.21 47.7 -0.37 ±0.79 0.363 

OHP 

SiSt 1 1.37 ±0.31 1.40 ±0.29 50.6 0.02 ±0.70 0.512 

StSi 1 1.84 ±0.43 1.58 ±0.32 58.2 -0.25 ±0.99 0.144 

SiSt 2 1.39 ±0.27 1.42 ±0.23 47.8 0.03 ±0.67 0.213 

StSi 2 1.75 ±0.34 1.65 ±0.33 41.7 -0.10 ±0.71 0.523 
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Figure 4.  Bland-Altman plots of the averaged TD times for YHP using 

chair #1 (a) VESPA algorithm and (b) Wavelet algorithm. 

IV. DISCUSSION 
The aims of this study were to evaluate two algorithms 

for their utility in interrogating data from use of an 
accelerometer-based device to classify PT and to evaluate 
their accuracy in measuring the TD of each PT. Both 
algorithms were excellent in classifying the PT type (SiSt 
and StSi) based upon a large number of transitions 
performed using two different chairs in both the YHP 
(>93%) and OHP (>86%) groups. Results from the VESPA 
algorithm correlated better with those from the gold standard 
video recording with excellent ICCs for the YHP (0.918 - 
0.969) and moderate for OHP (0.678 – 0.772). In 
comparison, results from use of the wavelet algorithm 
showed only moderate correlations for the YHP (ICCs, 
0.363 – 0.538) and low correlations for the OHP (ICCs, 
0.144 – 0.523). One explanation for this discordant finding is 
that the definition of a TD used within this study and the PT 
strategy adopted by the participants were better suited to data 
analysis using the VESPA algorithm rather than wavelet 
algorithm and was independent of the type of chair used. 
Firstly, we defined a TD for SiSt and StSi as the periods 
from static equilibrium in a sitting/standing position to the 
next period of static equilibrium. Secondly, the PT strategy 
adopted by the YHP and OHP for SiSt can be defined by the 
momentum transfer (MT) strategy, the ideal and most 
efficient strategy for all healthy adults [11]. During MT, the 
upper-body transfers forward momentum to vertical 
momentum and continues forward momentum until the 
person lifts the buttocks off the chair (‘lift off’) [12]. Those 
dynamics constitute the theoretical basis for the VESPA 
algorithm and are optimised for use with data from a sensor 
placed on the chest. In contrast, with data from a sensor 
placed on L5, the wavelet algorithm is not suited to detection 
of the initiation of forward momentum from the upper torso 

during a normal SiSt. Although not investigated in the 
present study, it is possible that the wavelet algorithm may 
be best suited to use with data from patients with pathologies 
which affect PT or older adults with functional limitations 
who adopt a different PT strategy such as the stabilisation 
strategy, where lift off from the seat is accomplished without 
assistance from vertical momentum [12]. This hypothesis 
remains to be tested. 

V. CONCLUSION 
The use of an accelerometer-based sensor on the chest or 

lower back to capture PT and the application of appropriate  
algorithms to interrogate the resulting datasets can provide  
accurate means of detection of SiSt and StSi transitions. In 
our experience, the VESPA algorithm with sensor location 
on the chest was more accurate in detecting transition 
duration for both sitting to standing and standing to sitting 
transitions in both healthy younger and older adults.  
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