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Abstract— In order for a prosthesis to restore power gener-
ation during cycling, it must supply torque in a manner that is
coordinated with the motion of the bicycle crank. This paper
outlines an algorithm for the real time estimation of the angular
position of a bicycle crankshaft using only measurements inter-
nal to an intelligent knee and ankle prosthesis. The algorithm
assumes that the rider/prosthesis/bicycle system can be modeled
as a four-bar mechanism. Assuming that a prosthesis can gen-
erate two independent angular measurements of the mechanism
(in this case the knee angle and the absolute orientation of the
shank), Freudenstein’s equation can be used to synthesize the
mechanism continuously. A recursive least-squares algorithm
is implemented to estimate the Freudenstein coefficients, and
the resulting link lengths are used to reformulate the equation
in terms of input-output relationships mapping both measured
angles to the crank angle. Using two independent measurements
allows the algorithm to uniquely determine the crank angle
from multi-valued functions. In order to validate the algorithm,
a bicycle was mounted on a trainer and configured with the
prosthesis using an artificial hip joint attached to the seat post.
Motion capture was used to monitor the mechanism for forward
and backward pedaling and the results are compared to the
output of the presented algorithm. Once the parameters have
converged, the algorithm is shown to predict the crank angle
within 15◦ of the externally measured value throughout the
entire crank cycle during forward rotation.

I. INTRODUCTION

As lower limb powered prostheses begin to emerge in the
commercial market, amputees will likely desire to use these
devices for activities outside of those necessary for everyday
living. The majority of research on powered prostheses
focuses on the mobility and stability benefits of walking on
level ground, slopes, and stairs [1–5]. Cycling, however, is
both a popular recreation and also a tool used for fitness
and rehabilitation. It is also an activity that is characterized
by significant net power generation at the hip, knee, and
ankle joints [6–9]. It can be predicted, then, that lower limb
amputees would suffer significant performance disadvantages
when using passive prostheses for cycling. Some recent work
has been done exploring cycling in transtibial amputees (with
passive ankles), but the authors know of no comparable stud-
ies for transfemoral amputees [10]. This manuscript marks
the beginning of an investigation into what is necessary for
a powered knee and ankle prosthesis to contribute power
during cycling in transfemoral amputees.

In healthy biomechanics, the majority of the external work
done by the pedaling limb is performed during what is known

*This work was not directly supported by any organization.
1B. E. Lawson, A. Shultz, E. Ledoux, and M. Goldfarb are with

the Department of Mechanical Engineering, Vanderbilt University, 2400
Highland Avenue, Nashville, Tennessee, USA. m.goldfarb at
Vanderbilt.Edu

Fig. 1: Kinematic diagram of the four bar linkage model.

as the power stroke. The power stroke consists of knee
and hip extension and ankle plantarflexion when the crank
arm is in the forward half of its revolution. If the angle
of the crank is denoted by θc and the convention shown
in Fig. 1 is adopted, then the power stroke occurs between
approximately 30◦ and 120◦ for the particular configuration
shown. The power stroke region will generally vary as
a function of the seat tube angle (ϕ0 in Fig. 1), as the
mechanical advantage of the lower limb joints with respect
to the crank is a function of their relative angles and not their
orientation with respect to gravity. For example, the power
stroke for a recumbent bicyclist would be approximately 90◦

earlier than for an upright bicyclist.
If a powered prosthesis is going to supply torque to

supplement an amputee’s effort during cycling, an estimate
of the crank angle is critical. The crank cycle is generally
divided into 4 strokes: top, power, bottom, and recovery
[10]. The transmission of torque from the knee to the crank
inverts during the top and bottom strokes. The crank angle,
along with the direction of rotation, must be known to the
prosthesis to avoid supplying an extensive torque during the
recovery stroke or a flexive torque during the power stroke.
At the very minimum, therefore, an estimator is needed that
can determine the initiation and termination of the power and
recovery strokes.

II. METHODS

It is assumed that the prosthesis can measure θk and
ϕs. For the powered prosthesis previously developed by the
authors, θk is measured by an absolute magnetic encoder,
while ϕs is measured by an inertial measurement unit (IMU).
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With these two measurements, the relative lengths of each
link in the four bar mechanism can be determined, and the
result can then be used to uniquely determine the crank angle.

A. Estimation of Link Lengths

For the purposes of this work, the rider/prosthesis/bicycle
system is assumed to be appropriately modeled by a planar
four-bar linkage. This model therefore assumes that (1) the
hip joint remains in a fixed location relative to the crank
axis and (2) that the ankle joint is capable of remaining
infinitely stiff such that the shank and foot can be treated
as a single link. Under these conditions, this single degree-
of-freedom mechanism can be completely characterized by
the generalized coordinate ϕc, which is the angle of the
crank shaft with convention as shown in Fig. 1. Note
that this convention is different from that generally used
in the biomechanics literature (denoted in Fig. 1 by θc),
which defines the top-dead-center (TDC) position of the
crank arm as zero, with forward rotation being positive
[6, 10]. Because this is a single degree-of-freedom system,
ϕc uniquely determines the configuration of the system under
the further assumption that the knee cannot hyper-extend. (If
hyperextension were allowed, there would be two assembly
modes for the mechanism.) However, this mapping is a
function of the relative link lengths of the mechanism, and
so these link lengths must be determined if the relationship
between ϕc and an internal prosthesis measurement, such as
the knee angle, θk, is going to be exploited to determine the
crank angle.

In general, it would be best to avoid specifying the
geometry of the system explicitly since these parameters will
likely change between riders and bicycles. Therefore, only
the following parameters are specified: the seat tube angle,
ϕ0 (for most bicycles, this is close to 75◦), rp, and θp. With
these parameters set and assuming at least 3 known input
and output angles of the mechanism, the link lengths can
be determined uniquely through classic analytical methods.
If ϕp and ϕt are used (which can be uniquely determined
from the measured angles θk and ϕs), then Freudenstein’s
equation can be written in the following form (derived from
the loop close equation: ~rc + ~rp = ~r0 + ~rt).

K1 cosϕt0 +K2 cosϕp0 +K3 = cosϕtp (1)

where the notation ϕab denotes (ϕa − ϕb). The coefficients
are given by

K1 =
r0
rp

K2 = −r0
rt

K3 =
r20 + r2t + r2p − r2c

2rprt

(2)

The orientation of the shank with respect to gravity (and,
through the knowledge of ϕ0, also with respect to the bicycle
frame representing the fixed link of the four bar mechanism)
is estimated in real time by combining the high frequency

portion of the integral of the in-plane angular rate measured
by a solid state gyroscope with the low frequency portion
of the inverse tangent of the in-plane accelerometer signals
through the use of first order complementary filters with
time constants of one second. The orientation of the thigh is
determined by adding the knee angle (less θp) to the shank
orientation. As the prosthesis moves through the cycling
motion (initially generated, at least, by effort from the hip
or the contralateral limb), pairs of angles are continually
generated that should be consistent with the geometry of a
particular four-bar mechanism. A continuous time recursive
least-squares (RLS) estimator was implemented in MATLAB
Simulink to achieve a best fit from the measured angles in
real time. The implementation of the least squares estimation
follows that presented in [11]. The covariance matrix was
initialized as the identity matrix, and the forgetting factor
was set to unity.

B. Estimation of Crank Angle

Either of the independent angles (the knee angle or the
IMU orientation) used for the link length estimation can
be used to find the crank angle. In each case, however,
the mapping is both multi-valued and, at certain points, ill-
conditioned. First consider the mapping from γ, which is the
supplementary angle for the quantity (θk − θp), to ϕc.

ϕc = ϕ0 − arccos(
r2c + r20 − r2p − r2t + 2rprt cos γ

2rcr0
) (3)

The inverse cosine (y = arccosx) is typically defined over
the principal domain of {−1 ≤ x ≤ 1} and range of {0 ≤
y ≤ π} to avoid ambiguity. The crank angle, however, must
be allowed to evolve from 0 to 2π, and so (3) alone will be
insufficient for calculating ϕc.
ϕc can also be written as a function of ϕp,

ϕc = 2arctan

−Bp ±
√
B2
p − 4ApCp

2Ap

 (4)

where the coefficients Ap, Bp, and Cp are nonlinear func-
tions of the link lengths and ϕp.

Even if a four-quadrant inverse tangent is applied, the
quadratic expression still yields two possible values for ϕc.
Consequently, (4) is also multi-valued. Within a reasonable
tolerance, however, one output from each expression should
be in agreement, resolving the ambiguity. The estimation al-
gorithm therefore continuously evaluates the four conditions
and selects the two closest values of ϕc as the most likely
estimates for each expression.

Using two estimates of ϕc not only resolves the multi-
valued problem, but it also provides an opportunity to mini-
mize the errors resulting from singularities in either estimate.
A linear combination of the two estimates is constructed
using normalized weights calculated from the relative mag-
nitudes of the derivatives of (3) and (4). Although explicit
differentiation of (3) and (4) is difficult, the derivatives can
be expressed implicitly as
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dϕc
dγ

= − rtrp sin γ

r0rc sin (ϕ0 − ϕc)
(5)

and

dϕc
dϕp

= −rp sin (ϕp − ϕt)
rc sin (ϕc − ϕt)

(6)

respectively. The weights for the γ and ϕp estimates, respec-
tively, are given by

Gγ = 1−
(dϕcdγ )2

(dϕcdγ )2 + ( dϕcdϕp
)2

(7)

Gϕp = 1−
( dϕcdϕp

)2

(dϕcdγ )2 + ( dϕcdϕp
)2
. (8)

The weights as functions of the output are plotted in
the bottom graph of Fig. 2. As each derivative approaches
infinity, its respective contribution to the crank estimate
approaches zero. Note also that, in general, the derivative of
the output with respect to the knee angle measure is smaller
than the derivative with respect to the shank angle measure,
causing the knee measure to dominate the estimation except
near its singularities.

III. VALIDATION

A powered knee and ankle prosthesis previously developed
by the authors was fitted to a bicycle and connected to an
artificial passive hip joint mounted to the seat post. The
internal signals of the prosthesis (knee angle and shank
orientation) were logged simultaneously with external mo-
tion capture. The data from the prosthesis were streamed to
MATLAB Simulink (running Real-time Windows Target) via
a Controller Area Network (CAN) interface at a rate of 250
Hz. In Simulink, an ankle torque reference was computed
from the position and velocity signals and returned to the
prosthesis embedded system in order to emulate a stiff spring
and damper system. With no significant external torques
applied, the ankle remained fixed while the author moved the
bicycle crank through forward and backward rotation using
the contralateral crank arm. A torque reference of zero was
applied to the knee joint in order to allow it to move freely.

In the motion capture software environment, five rigid
bodies were defined with reflective markers corresponding
to the bicycle frame, crank arm, prosthetic foot, prosthetic
shank, and artificial thigh. The markers were tracked with
a 12 camera motion capture package from Natural Point at
120 fps. These data were then exported to MATLAB for post
processing. Principle component analysis was performed on
the set of all marker locations for each joint axis. The mean
direction of the third principle components of all the axes
was used to reduce the data to 2 dimensions. The resulting
data were then used to compute the link lengths and angles
of the mechanism. A photograph of the setup, along with the
motion capture model determined by the markers, is shown
in Fig. 3.
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Fig. 2: Theoretical plots of ideal four bar behavior. The input angles were
generated from the inverses of (3) and (4) as ϕc was swept from 0 to
360◦. The second plot shows both possible values of ϕc from (3) and (4),
along with the true value of ϕc. The third plot shows how dϕc/dγ and
dϕc/dϕp evolve as functions of ϕc, indicating the two singularities in the
inverse mappings. The fourth plot shows the weights Gγ and Gϕp used to
combine the matching outputs of (3) and (4) to generate the estimate of ϕc.

(a) photograph (b) motion capture model

Fig. 3: The powered prosthesis configured on the bicycle (a) and the motion
capture model (b). The red squares in (b) denote the joint axes.
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A. Parameter Estimation
Upon startup, the algorithm must first obtain sufficient data

from the prosthesis in order to converge on the Freudenstein
coefficients. A plot of the coefficient estimates is shown in
Fig. 4. A comparison of the link lengths as determined by
both the motion capture system and the prosthesis is provided
in Table I.

TABLE I: Determination of four-bar link lengths

Link Motion Capture Prosthesis
µ (m) σ (m) µ (m) σ (m)

r0 0.751 0.002 0.732 0.006
rt 0.335 0.003 0.319 0.005
rp 0.611 0.001 0.610 0.000
rc 0.167 0.008 0.163 0.003
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Fig. 4: Convergence of Freudenstein coefficients using RLS.

B. Crank Angle Estimation
The error in the crank angle measure over three cycles is

shown in Fig. 5. Also included in Fig. 5 are the angular errors
for each independent estimate of the crank angle before their
linear combination. Note that the effect of the singularities is
clearly present in each signal, and also that these errors are
reduced using the fusion technique described. The measured
and estimated crank angles from an entire trial including
forward and backward rotation are plotted as functions of
time in Fig. 6. In this trial the crank was moved in both
directions. The maximum error after parameter convergence
in this trial was approximately 20◦ due to a direction reversal
(at 19 s).

IV. CONCLUSION

The presented algorithm avoids singularities from both
measurements for the geometry used in the experiment, and
estimates the crank angle within 15◦ when the hip joint is
constrained and the bicycle is driven in the forward direction.
Future work will include using the estimate to time the
delivery of knee torque in order to supplement an amputee
subject’s effort during steady-state cycling.
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Fig. 5: Error as a function of crank angle. The error from the γ-based
estimate is denoted by blue squares, the error from the ϕp-based estimate
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Fig. 6: Crank angle as measured by the motion capture system and estimated
by the prosthesis for the trial showing forward and backward rotation.
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