
  

 

Abstract—Falls are a large concern for individuals with 

lower limb amputations. Advanced powered prosthetic devices 

have the potential to quickly intervene after perturbations and 

help avoid a fall, but active balance recovery mechanisms have 

yet to be implemented. We investigated the feasibility of a real-

time pattern recognition system for identification of trip 

recovery strategies. We tripped able-bodied subjects multiple 

times throughout swing phase and investigated the classification 

of walking, elevating and lowering strategies. Linear 

discriminant analysis was used throughout swing phase to 

classify kinematic data from the tripped leg. Window 

parameters that maximized classification accuracy were chosen 

from lengths of 50 to 200 ms and increments of 10 to 50 ms. We 

compared the performance of a single- and a two-stage (trip 

detection followed by strategy identification) classifier 

architecture. Optimal window length varied by classification 

stage, and window increment did not affect accuracy. The two-

stage architecture performed significantly better overall, 

achieving a 92% median (range 88%-96%) accuracy across 

subjects compared to 88% (84%-96%) with the single-stage 

architecture. Most of the errors occurred immediately after the 

trip, with accuracies plateauing within 100 ms. Our results 

suggest that algorithms using data that can be measured from 

sensors embedded in robotic assistive devices could be used to 

trigger active balance restoring strategies following trips 

throughout swing phase. 

I. INTRODUCTION 

Falls are a major concern for individuals who are older or 
have a disability due to the potential of causing an injury [1], 
thereby reducing their willingness to ambulate [2]. More 
than 60% of individuals with a transfemoral amputation 
recall falling at least once in the previous year [3]. 
Transfemoral amputees have difficulty recovering from trips 
[4], and the lack of support from the prosthesis during 
recovery often leads to falls [5]. Commercially available 
lower limb prostheses are functionally limited by their 
passive mechanical properties. One example of stumble-
recovery mode–a response in which the knee provides high 
flexion resistance in response to a stumble–is still unable to 
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help transfemoral amputees restore their balance following 
trips throughout all of swing phase [5]. 

A new generation of powered lower limb prostheses have 
the capability of providing net positive mechanical work [6, 
7]. While these devices have been programmed for modes 
such as walking and stair climbing, they have yet to include a 
trip recovery mode. Able-bodied individuals recover from 
trips by either immediately lifting the tripped foot over the 
obstacle (i.e., an elevating strategy), or quickly lowering the 
tripped foot down to the ground to provide support (i.e., a 
lowering strategy) [8]. Transfemoral amputees attempt 
similar strategies [9], enabling powered devices to respond 
accordingly could improve recovery. However, selection 
between these two recovery strategies is not straightforward; 
while elevating strategies are used following trips in early 
swing and lowering strategies are used following trips in late 
swing, an overlap exists in mid-swing [10]. How strategies 
are chosen is not fully understood [11], and consequently 
cannot be well predicted. 

Recovery strategies, however, have repeatable 
characteristics and it may be possible to identify the strategy 
once an individual begins to recover. Initial trip detection 
followed by strategy identification could enable accurate 
identification. Minimizing response time–or maximizing lead 
time to foot-strike–is critical to enable balance recovery. 
Differences between strategies can take up to 100 ms to 
occur, while foot-strike can be as early as 125 ms following a 
trip [10]. For a successful stumble recovery mode, trip 
detection, strategy identification, and enabled prosthesis 
response need to all occur within this time frame. 

A similar time-sensitive classification problem that has 
been widely studied is fall detection. Multiple-stage, 
continuous-time approaches have been successfully used to 
distinguish falls from activities of daily living [12, 13]. 
Threshold-based algorithms monitor body segment velocities 
and accelerations and can accurately determine if a fall is 
occurring up to 700 ms before impact [13]. Similar 
algorithms based on thresholds of lower limb accelerations 
have been used to detect stumbles [14] and recovery 
strategies [15]. Although both studies reported near-perfect 
classification accuracies, the number of trips tested was 
small or restricted to single onset times in early and late 
swing phase. It is unclear how these algorithms would 
perform in response to trips throughout swing phase, 
specifically during mid-swing when both recovery strategies 
are used. A more advanced algorithm including pattern 
recognition classifiers has shown to be beneficial in 
identifying different ambulation modes [16, 17] and similarly 
may help to distinguish recovery strategies. 
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In this study we investigated the feasibility of a real-time 
trip recovery strategy classification system. We studied the 
effect of two different classifier architectures and a range of 
analysis window parameters on the classification accuracy of 
walking, elevating and lowering recovery strategy classes. 
We hypothesized that a two-stage architecture would result 
in higher accuracies than a single-stage architecture. We also 
hypothesized lower accuracies in the tripping trials when 
compared to the walking trials due to large errors 
immediately following the trip. 

II. METHODS 

A. Data Collection 

Eight able-bodied subjects (24 ± 2 years old, 
1.70 ± 0.07 m, 64.3 ± 9.5 kg) were tripped using a custom-
built device [11] while walking on a treadmill at 1.4 m/s. A 
tether attached to either foot arrested forward movement of 
the foot for 150 ms during swing phase. Trips were induced 
on the right and left sides at 6 different points in swing phase 
(10% to 60% of swing phase in 10% increments). Each side-
onset combination was repeated six times. To avoid 
anticipation, trips were applied in random order and 
separated by at least one minute. Five baseline walking trials 
were collected throughout the tripping trials. 

Motion capture data from the pelvis and lower limbs 
were acquired at 100 Hz. Forces were obtained from load 
cells (LC703-50, Omegadyne, Sunbury, OH) attached along 
the tripping tethers and from force plates embedded in the 
treadmill (ADAL 3D-F/COP/Mz, Medical Developpement, 
Andrézieux-Bouthéon, France). Analog data were sampled at 
1 kHz. Data were collected synchronously in Cortex (Motion 
Analysis, Santa Rosa, CA). 

Motion data were exported to Visual3D (C-Motion, 
Germantown, MD) to obtain joint angles. All data were then 
exported to Matlab (The Mathworks, Natick, MA). Ground 
reaction forces were used to identify foot-strike and toe-off. 
Trip tether loads were used to indicate trip timing. An 
automated algorithm was used to identify recovery strategies 
based on the difference between post-trip foot trajectories 
and baseline walking [11]. We only analyzed trip trials that 
resulted in elevating (25 ± 12 trials across 6 subjects) or 
lowering (32 ± 17 trials across 8 subjects) strategies.  

B. Classifiers 

Two separate, subject-specific, linear discriminant 
analysis classifier architectures were investigated (Fig. 1a). 
A single-stage architecture was trained to recognize the 
difference between 1) walking, 2) tripping recovery with an 
elevating strategy, and 3) tripping recovery with a lowering 
strategy. A two-stage architecture was trained to first 
recognize the difference between walking and trips (i.e., trip 
detection) and then, if a trip was detected, recognize the 
difference between the elevating and lowering recovery 
strategies (i.e., strategy identification). 

Sliding analysis windows were used to continuously 
classify the data from toe-off to foot-strike. The effect of 
window parameters on classification was investigated. 
Window lengths of 50, 100, 150 and 200 ms and window 
increments of 10, 20, 30, 40 and 50 ms were tested. 

In order to investigate the feasibility of a system 
contained within a transfemoral prosthetic device, only data 
from the tripped leg that could be measured with embedded 
sensors were used. Kinematic data consisted of the following 
sagittal plane variables: knee and ankle angle and 
acceleration, and foot acceleration magnitude. Because of 
the short window lengths and low frequency content of these 
variables, time-domain features extracted were minimum, 
maximum, mean and standard deviation [17]. 

C. Analysis 

A single swing phase was extracted from each trial. For 
walking trials, we used the second swing phase of the left 
leg. For elevating and lowering strategy trials, we used the 
swing that contained the trip. Elevating and lowering strategy 
trials were labeled as walking until the trip, after which they 
were labeled as a trip or the respective recovery strategy 
depending on the classification stage. Two out of the eight 
subjects recovered from trips only using lowering strategies, 
so their data were not included in the strategy identification 
classifier. Due to the limited number of trials per subject, 
classifiers were evaluated using leave-one-out cross-
validation. Class accuracies were calculated as the average 
across all trials within each class. Accuracies for each 
subject were the average accuracies across classes. 

The effect of different window parameters on 
classification accuracy was analyzed for both architecture 
types and for each class. First, we determined the effect of 
window length for each window increment. For each 
classifier stage, the length that resulted in statistically higher 
accuracy for the largest number of increments was chosen. 
For each optimal length, we compared the effect of window 
increments and chose the increment that resulted in highest 
accuracy. Once both window parameters were determined, 
classifier architectures were compared. 

Classification accuracy over time was calculated as the 
average accuracy for each time point across trials (Fig. 1b). 
Walking trials were lined up at toe-off, and elevating and 
lowering trials were lined up at trip time. Time was limited 

 
Figure 1. Classifier architectures and accuracy calculation method. a) A 

single- and a two-stage architecture were tested. b) Accuracies for a class 

over time were the average at each window increment across trials. 
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to the length of the shortest trial across all subjects, to 
constrain the classifier to the shortest response times. 

Statistical analyses of classification accuracy included 
nonparametric Friedman ANOVAs and post-hoc tests with 
Bonferroni corrections. Classifier architectures were 
compared with sign-tests. Significance was at the 0.05 level. 

III. RESULTS 

A. Window Length 

Optimal window length depended on both classification 
stage and data class (Fig. 2). In the single-stage classifier, 
window length affected walking class accuracy for all 
window increments, while elevating and lowering classes 
were affected in few cases. Window length affected the 
accuracy of elevating strategies in trip detection, and both 
elevating and lowering strategies in strategy identification. 

Optimal window lengths were consistent for each 
classifier, as indicated by post-hoc comparisons. For the 
single-stage and trip detection classifiers, window lengths of 
50 and 100 ms achieved significantly higher accuracies over 
a range of window increments when compared to 150 or 
200 ms (p<.05) (Fig. 2). For the strategy identification 
classifier, window lengths of 150 and 200 ms outperformed 
50 ms (p<.05). There were no significant differences within 
the shorter (i.e., 50 and 100 ms) and longer (i.e., 150 and 
200 ms) window lengths. Thus, we chose the shortest length 
of each group to reduce the data processing requirements. 
For the single-stage and trip detection classifiers we used a 
50 ms window length and for the strategy identification stage 
we used a 150 ms window length. 

B. Window Increment 

There were no significant effects of window increment 
for the optimal window lengths chosen above. Thus, we used 
the shortest increment (i.e., 10 ms) as this outputs decisions 
more often and potentially allows more time for recovery. 

When comparing the overall classification (Fig. 3), the 
two-stage architecture was significantly better than the 
single-stage classifier (p<.05). All trip trials were correctly 
identified in at least 1 analysis window in both architectures. 

C. Errors Over Time 

Most errors occurred during tripping trials (Fig. 4). Trip 
detection errors were concentrated immediately after the trip; 
60 ms after the trip, average error rates were less than 10%. 
Strategy identification was less accurate for elevating 
compared to lowering strategies during most of recovery. 
Overall accuracies for both classifier architectures plateaued 
within 100 ms after the trip. 

IV. DISCUSSION 

This study was the first to attempt identification of 
recovery strategies in response to multiple (more than 20) 
trips throughout swing phase. By separating classification 
into two stages, we were able to statistically improve the 
overall accuracy (92% median accuracy) compared to using 
only one stage (88% accuracy). The two-stage architecture 
took advantage of the similarity between the tripping classes 
to distinguish them from walking data, as suggested by the 
improved classification of walking trials when compared to 
the single-stage architecture (Fig. 4). Strategy identification 
was also improved, resulting in slightly higher accuracies 
during recovery. The optimal window lengths associated 
with each classification stage were likely related to the 
ability of the short windows to quickly capture the changes 
due to the trip, while longer windows better represented the 
slower kinematic characteristics of the strategies. Our results 
show that continuous pattern recognition classifiers can be 
used to accurately and quickly identify able-bodied subjects’ 
response to trips. 

While trip detection accuracies were less than 100%, 
both architectures correctly detected the occurrence of all 
trips. This is because overall accuracies reflect delays in 
detection and errors in walking trials. As expected, classifier 
errors were concentrated immediately after each trip. Errors 
in trip detection increased drastically at trip time, but 
reduced to less than 10% error 60 ms after the trip. It is 
possible that kinematic patterns at the end of swing are 
similar across classes, which could have prevented further 
increase in accuracy. Implementing a voting scheme, or 
incorporating time-history, could increase post-trip accuracy, 
although at the cost of increasing the delay. For example, if a 
trip were detected at multiple increments, the trip class could 
be held until foot-strike. This could also improve walking 

 
Figure 3. Classification accuracy across subjects for the single- and two-

stage architectures (left) and trip detection and strategy identification stages 

(right). Asterisk indicates significant differences (p<.05). 

 
Figure 2. Effect of window length on classification accuracy for walking (left), elevating (center) and lowering (right) classes. Window lengths were 

compared for each window increment. Gray shading indicates a significant effect of window length. Significant post-hoc comparisons are indicated by 

black squares, with the better length(s) in the vertical direction, and the worse length(s) in the horizontal direction.  
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accuracy, as repeated misclassifications should be less likely 
to occur. Reducing false positives (i.e., detecting a trip when 
no trip has occurred) is very important for patient safety. 

Our data set included trips throughout swing phase, while 
previous trip detection [14] and strategy identification [15] 
studies focused only on trips in early or late swing. In these 
studies all trip trials were also correctly detected, with less 
than 0.01% walking misclassification. Trips in early and late 
swing were detected at least 100 ms ahead of a critical body 
inclination angle [14], which is similar to our minimum lead 
time before foot strike. This might not be enough time to 
generate large corrective motions, but may allow the device 
to prepare for weight bearing and avoid falls due to lack of 
body support [5]. Trip detection and strategy identification 
were previously achieved within 50 ms of the trip [15], 
which is similar to our trip detection delay and within the 
reaction delay in human subjects [10]. Our accuracies, 
however, are lower; in particular, the strategy identification 
stage should be improved. Future studies could explore these 
proposed algorithms on trips with varying onsets. 

This study had some limitations. We only tested on data 
from able-bodied individuals; the same approach is easily 
applicable to amputee data. Additionally, it is possible that 
only a subset of the kinematic channels used are providing 
the most important information for classification, and the 
number of sensors required could be reduced. We tested and 
trained the classifiers on data from the same subject, but an 
across-subject classifier would be beneficial in practice. 

V. CONCLUSION 

As assistive and prosthetic robotic devices are further 
developed, they must accommodate more situations that are 
common in daily life such as perturbations during gait. Our 
results suggest that trip detection and strategy identification 
are feasible with a continuous pattern recognition-based 
classifier. Further improvements to the classification system 
and generalization across subjects should be explored. 
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Figure 4. Classification accuracies over time for each class in the a) single- and two-stage architectures, and b) trip detection and strategy identification 

classifiers. Lines are averages across subjects with shaded standard deviations. 
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