A Real-time Adaptive Oxygen Transfer Rate Estimator for
Metabolism Tracking in Escherichia coli Cultures*

Li Wang, Matthew E. Pepper, Ajay Padmakumar, Timothy C. Burg, Sarah W. Harcum, and Richard E. Groff

Abstract— Oxygen transfer rate (OTR) is the most
significant signal for aerobic bioprocess control, since most
microbic metabolic activity relies on oxygen consumption.
However, accurate estimation of OTR is challenging due
to the difficulty of determining uncertain oxygen transfer
parameters and system dynamics. This paper presents
an adaptive estimator, which incorporates exhaust gas,
stir speed and dissolved oxygen measurements, to predict
the real-time OTR. The design of this estimator takes
into account the headspace dilution effect, off-gas sen-
sor dynamics and uncertain oxygen transfer parameters.
Through simulation the estimated real-time OTR is shown
to accurately track quick changes of oxygen demand in the
culture. Thus, it can be applied to a variety of controls and
estimation purposes, such as determining when the culture
is in oxidative or overflow metabolism.

I. INTRODUCTION

Oxygen transfer rate (OTR) is the most significant
measurable online signal for aerobic bioprocess con-
trol. It can be used to quantify different physiological
states of the culture by determining the related oxygen
consumption[1]. The shape of the OTR signal indicates
rich information, such as substrate limitation, oxygen
limitation, product inhibition and diauxic growth, about
the metabolism of aerobic micro-oganisms[2].

The determination of real-time OTR is challenging,
because it depends on the oxygen solubility, stir speed,
cultivation media, temperature, pressure and other fac-
tors. Methods for determining OTR are categorized as
oxygen transfer coefficient method or off-gas analysis
method. For the oxygen transfer coefficient method,
oxygen transfer capability is often characterized by
a lumped parameter called the liquid-side volumetric
mass-transfer coefficient kpa[3]. Much prior work has
explored the experimental methods for determining £ a.

The oxygen transfer coefficient method can be classi-
fied as physical or chemical methods. Physical methods
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directly measures the oxygen concentration of the so-
lution, while chemical methods measures the reaction
rate of a homogeneous reaction. Most of these methods
calculate the kra when there are no cells or other
uncertain organisms consuming the dissolved oxygen.
However, kra value will drift away from the pre-
calibrated value when cells are added to the culture.
Thus, the real-time OTR predicted from those predefined
kra values are inaccurate. OTR estimation for oxygen
consuming system often assumes that OUR (oxygen
uptake rate) and kra remains constant for a short period
of time[4]. This assumption makes it impossible to track
quick changes in kpaonline. This method is also not
efficient when kra needs to be determined regularly
during the experiment.

The off-gas analysis method directly measures the
amount of oxygen transferred into the solution with
an off-gas analyzer. It provides a more reliable source
of real-time OTR estimation. Recent advances in the
sensor development offers low cost off-gas analyzer(e.g.
BlueSens Gas Sensor GmbH, Herten, Germany) with
comparable accuracy to the established benchmark stan-
dard mass spectrometer. The reduced cost makes it
feasible to dedicate a sensor to each bioreactor to enable
more sophisticated real-time estimation and control of
bioprocesses. However, direct usage of off-gas sensor
measurement is problematic, because the sensor mea-
sures a heavily filtered version of OTR. The dilution
effect of headspace and sensor measurement dynamics
exert significant lag on the OTR, filtering out quick
changes in OTR. Previous work on off-gas analysis
ignores filtering effects, because lag in the OTR signal
is acceptable for slow monitoring applications. However,
those effects need to be considered for more advanced
real-time bioprocess estimation and control.

This paper reconstructs real-time OTR by modeling
the dilution effect of the head space and the lag of
the off-gas sensor. The prior unknown and time-vary
parameter kra is linearized by the stir speed. The
parameters of the kpa linearization are adaptively
updated using off-gas measurements. OTR estimate is
then calculated from stir speed and dissolved oxygen
level using the adaptive kya parameters to account for
the slow variations during the entire experiment. The
organization of the rest of the paper is as follows. The
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mathematical model of the bioreactor oxygen transfer
system is formulated in section II. Then, an adaptive
estimator based on the oxygen transfer dynamics is
presented in section III. A simulated fermentation ex-
periment is performed to validate the estimator design
in section IV. The characterization of the off-gas sensor
is provided in V. The paper is concluded in section VI
with a summary and discussion of future applications.

II. SYSTEM MODELLING

The real-time OTR estimator is based on a known
oxygen transfer model with unknown parameters. The
model will be discussed in this section. Let by, by, ba, b3
denote the mole percent oxygen of the gas inputting
into the culture, the gas coming out of the culture, the
gas in the head space of the bioreactor and the off-
gas sensor reading respectively. Figure 1 illustrates the
oxygen transfer model variables. Where V is the volume
of the culture, V5 is the volume of the head space.

by
Off-gas sensor —

T bO
Fig. 1: Variables for oxygen transfer model

Theoretically, OTR can be calculated with the oxygen
percentage difference between the gas entering and
exiting the culture.

M (bo — b1)po,

‘/1 )
where My is the mass flow rate, p,, is the oxygen
density at 37C°, 1 atm.

The off-gas sensor is used to measure the oxygen
percentage coming out of the bioreactor. However, the
sensor can not directly measure the off-gas percentage
b1. Instead, the sensor samples b, and its reading b3 has
a lag. The gas coming out of the culture first mixes with
the gas in the head space of the bioreactor. This mixing
process is modeled as a first order dilution process with
time constant 7 = % At the same time, the sensor
measurement dynamics can be characterized as a first
order system with time constant 75, which is independent
of My by the experiment discussed in section V.

OTR = (1)

. M
by = 7;(b1—b2>, )
. 1
bs = g(b2—53) 3)

The off-gas sensor reading b3 can be viewed as a
heavily filtered version of b;. Directly deriving b; from
bs will introduce noise to the signal, because it involves
taking the second derivative of b3. Let X = [bg,b3]?,
Equation (2) and (3) can be written as state space form:

Mfv
X = l_ Vo 0
1 1

My
>z+[ v ]bl @)

Another way of real-time OTR determination is to
consider the volumetric oxygen transfer coefficient kpa.
kra has a strong linear relationship with stir speed[6].

OTR = kpa(C* —C), 5)
kra = oap+ Oél(N — NQ), (6)

where kra is linearized around a stir speed Ny. The
relation between kra and stir speed does not remain
constant during the fermentation, due to the change of
liquid composition and viscosity. Hence, the parameters
ap and «; vary during the course of a fermentation
experiment. The method presented here combines the
off-gas sensor measurement with the stir speed and
dissolved oxygen readings to estimate o and o adap-
tively. This approximation of kya is timely unlike other
methods, because of its dependance on online sensors.

From Equation (1), (5) and (6), b; can be written as:

Vi(c* - 0) Vi(C* — C)(N — No)
— o — aq

b1 = by
pr02 pr02

(7
Combining (7) and (4), the oxygen transfer dynamics
can be reformulated as observable canonical form:

% = Ax + Bf, (8)
= Cx, &)
~H-L1 0 0 0
_ Vs T _
—Vi(C*=C)
fO 1 C*VQéOQ
C = nof=|f|=— AT
f2 2 My
Vo

where the system output y is the off-gas sensor mea-
surement, the system input f is a vector of functions of
the dissolved oxygen level and stir speed signals.

ITI. OTR ESTIMATOR DESIGN
If ap and oy are two slowly time varying unknown
parameters, then an adaptive observer of the following
form can be designed to achieve simultaneous state and
parameter estimation[7].

A§<+[p}fo+{£}f1

&%)

5\(:

(10)
QY

0
+{b ]f2+p+q,
0

v = Ox,
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where p and ¢ are auxiliary variables compensating the
parameter estimation errors. The estimation error dy-
namics can be derived by taking the difference between
the estimator and the real system.

e = Ae+ofotvfitpta, (12)
eg = Ce, (13)
wheree = x—x,e1 =9 —y, ¢ = [O,_do—ao]T,

¥ = (0,61 —a1]", p = [0, —4prwa + dows]”, and
q =0, —4rva +1hova]”. w(t) = G(s) fo(t), v(t) =
G(s)f1(t) and G(s) = 57, 34]""

The adaptive law is chosen as gb = —ye1w, 1/) =
—~1e1v, where 7y and ~y; are adaptive gains. The real-
time OTR signal is derived with the adaptively updated

parameters &g and &y

OTR = (i + a1 (N — Ny))(C* = ©),

(14)

IV. SIMULATION RESULTS

The tracking performance of the adaptive estimator
was first evaluated with Matlab simulation. A model
developed by Xu et al.[5] is adopted to simulate how
the E. coli cells take in substrate and oxygen to produce
biomass, while generating carbon dioxide and acetate.
The model consists of the dynamic equations of biomass,
substrate, acetate, oxygen and growth rate. It accurately
emulates the metabolism of the cells.

E. coli has three different phases of metabolism, i.e.
oxidative, overflow and metabolite consumption[5]. In
the oxidative metabolism phase, the cells process glu-
cose aerobically without producing harmful byproduct.
When excessive amount of glucose exists in the envi-
ronment, the cells go to overflow metabolism, process-
ing glucose anaerobically while producing growth in-
hibitor(acetate). The metabolite consumption processes
acetate when glucose supply becomes limited. The prin-
ciple of growth maximizing controller is to maximize
oxidative metabolism while avoiding the overflow phase.
OUR is an excellent indicator for overflow because it
plateaus when cells enter overflow phase.

The overall performance of the estimator in a 14.5
hours simulated E. coli fermentation is illustrated in
fig. 3. OTRxu is generated by the Xu uptake model.
The estimated OTRest gradually converges to OTRxu at
the 4th hour and keeps the good tracking performance
until the end of the fermentation experiment. During the
fed-batch phase, the glucose feeding rate increases by
every 1% discrete steps due to the resolution limitation
of the pump. It is also shown that every step change
of the glucose feeding rate also leads to a step change
in OTRxu. The estimator tracks exactly the quick step
changes in OTRxu, while OTRsen, i.e. value calculated
directly from the off-gas sensor, has significant lag and
fails to capture those quick changes.
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Fig. 2: Simulated OTR tracking: OTRxu is generated by
Xu model, OTRest is the estimated OTR, OTRsen is the
OTR calculated directly from the off-gas sensor

Two glucose feeding pulses(at t = 8.4h and t = 10.3h)
are applied to the culture during the fed-batch phase.
The estimator successfully compensates the lag in the
system and accurately tracks the pulse in the OTRxu.
As shown in Fig. 3a, OTRxu spikes immediately after
the pulse and then plateaus, which indicates that the cells
enter overflow metabolism. OTRest successfully tracks
the sudden changes in OTRxu, while the OTRsen ex-
periences significant lag and fails to capture the plateau
region of OTRxu. OTRest is more accurate and timely as
compared with other methods. Note that OUR directly
characterizes the metabolism of the cells. However,
OTR ~ OUR in Fig. 3a.

The filtering effect of the head space will be more
obvious when the head space is larger and mass flow
rate is smaller. The time constant of the headspace
dilution model is 71 = % When the mass flow
rate My decreases from 3 Ipm to 1 Ipm, 7 will be
three times larger, i.e. the lag in OTRxu signal will be
more significant. As illustrated in figure 3b, OTRest still
tracks the real OTR with high accuracy when M; = 1
Ipm, while OTRsen experiences significant lag. OTRsen
completely missed the plateau region, which indicates
the cells enter overflow metabolism. Fermentation under
low mass flow rate is the common case for mammalian
cells, which requires much less oxygen consumption
than E. coli . The advantage of using OTRest rather
than OTRsen will be more obvious for those low mass
flow rate applications.

A more interesting potential application of the estima-
tor is shown in Fig. 4. When a ramped pulse of glucose
feed rate is executed, OTRxu gradually increases and
reaches the maximum value. By comparing the real-
time feeding profile and OTRest signal, the estimator
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Fig. 3: OTR estimation in simulated E. coli fermentation,
OUR is calculated by OUR = OTR — C. FD is the
glucose feed rate during the fermentation.

can be used to identify the exact glucose feed rate(21
mL/h) at which the cells enter overflow metabolism.
By performing the ramped glucose pulse periodically
during the fermentation, the maximum feed rate can be
identified and used for maximizing growth control.
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Fig. 4: Simulated ramped glucose pulse(M =3 Ipm)

V. SENSOR CHARACTERIZATION EXPERIMENT

In order to implement the adaptive OTR estimator on
the system, the time constant 7o for the off-gas sensor
must be identified. The BlueInOne off-gas analyzer was
adopted for the fermentation experiment.

In the characterization experiment, the input gas by,
was connected directly to the input of the BlueInOne
sensor, bypassing the stirred-tank vessel; this allowed for
measurement of only the sensor dynamics free from the
gas transfer lag. As shown in Fig. 5, the composition and
flow rate of the input gas was varied in the experiment.
The time constant of the off-gas sensor 7o = 55s, i.e.,
the time for the sensor to reach 63% of its final value,

is independent of input mass flow rate in the operating
range (1 Ipm - 8 Ipm).

This experiment validates that sensor measurement
dynamics can be modeled as a first order system.
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Fig. 5: Bluesens time constant identification under dif-
ferent input gas mass flow rate

VI. CONCLUSIONS

This paper presents an adaptive estimator to accu-
rately track the real-time OTR of aerobic bioprocess.
The estimator compensates the effect of head space dilu-
tion, sensor lag and time-varying oxygen transfer param-
eters. The performance of the estimator is demonstrated
with simulated fermentation experiment. The application
of the OTR estimator to determine overflow metabolism
phase during the E. coli fermentation is elaborated.
The estimator developed in this paper enables accurate
tracking of the quick changes in OTR, thus provid-
ing timely indicator for culture states and metabolism
changes. The OTR estimator will be an integral part in
the development of maximizing controllers for oxidative
metabolism. Future work will analyze estimator perfor-
mance during E. coli fermentation experiment.
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