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Abstract— Axon is a filament in neuronal system and axonal 

microtubules are bundles in axons. In axons, microtubules are 

coated with microtubule-associated protein tau, a natively 

unfolded profuse filamentous protein in the central nervous 

system. These proteins are responsible for the cross-linked 

structure of the axonal microtubule bundles. Through 

complimentary dimerization with other tau proteins, bridges 

are formed to nearby microtubules to create bundles. The 

transverse reinforcement of microtubules by cross-linking to the 

cytoskeleton has been shown to enhance their ability to bear 

compressive loads. Though microtubules are conventionally 

regarded as bearing compressive loads, in certain circumstances 

such as in traumatic stretch injury, they are placed in tension. 

We employ Standard Linear Solid, a viscoelastic model, to 

computationally simulate microtubules. This study investigates 

the dynamic response of two dimensional axonal microtubules 

under suddenly applied end forces. We obtain the results for 

steady state behavior of axonal microtubule for different forces. 

I. INTRODUCTION 

Axon is one of the most important parts of the neuronal cells 

and axonal microtubules are fibers in axons (Fig. 1). The 

main function of microtubules is stabilizing the neuronal 

axons. Microtubule bundles located in the inner part of the 

axons have polar orientation [1]. Microtubules have cross 

linked with tau proteins. These tau proteins are the main 

factor of axonal strength and cause some electrical pulse to 

be emitted out of neurons (Fig. 1). 

There are several models for action of microtubules, axons 

or neurons. In fact, microtubules are the main parts of axons 

that protect them from mechanical strain. Size of 

microtubules and spatial position of these bundles in 

microtubules are discussed in 1980s and 1990s [1]. Tau 

proteins connect microtubules transversally. Geometry of 

these bundles are formed by their cross links. 

The injuries of microtubules are the main cause of stroke 

that happens during damage of axons or retraction of 

synapses [4] [2]. Microtubules are shown to rapture under 

the strain of about 50% [3]. 

In 2010, a mathematical model was studied the dynamics 

of microtubules [5]. In this model, microtubular bundles 

were assumed to be discrete masses. They pose linear 

springs between masses but the stiffness of microtubules was 
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not linear and they behaved such as a viscoelastic material. 

This has been observed in all experiments performed on 

axons. 

One of the models for axons in the recent years was 

suggested by [4]. They endeavored to model the axon under 

tension. In this model microtubules were assumed to be in 

hexagonal positions and each microtubule bundle was 

considered to have a discontinuity. There are 19 microtubule 

bundles in each axon. 

Microtubule bundles have been recently studied widely. 

One of the recent studies has used finite element method to 

model axons under tension and torsion [6]. 

Our main goal is to receive an appropriate model of 

axonal microtubules. In this model the dynamic response of 

microtubule bundle under the action of suddenly applied end 

forces was studied. Microtubules were connected to their 

neighboring microtubules using tau proteins that were the 

main feature providing axonal stiffness. As it is shown in 

Fig. 1, an axon is a part of the neuronal cell and axonal 

microtubules are located in the interior part of the axons. 

 
Fig. 1 Schematic of a Neuron with an Axon, Dendrites, Axonal terminals 

and Microtubules. 

II. METHODS 

A.  Viscoelasticity 

Mechanical modeling of materials can be easier by springs 

and dampers. Springs show the behavior of hookian solids 

and dampers remark the behavior of Newtonian fluids. A 

viscoelastic material behaves as a mixture of springs and 

dampers. We can model viscoelastic materials by using the 

combination of springs and dampers in series and parallel. 

For example Maxwell and Kelvin-Voigt models are the two 

introduced models for viscoelastic materials. As depicted in 

Fig. 2, Kelvin-Voigt model is represented by a spring and a 

damper in parallel and Maxwell model consists of a spring 
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and damper in series. 

Maxwell and Kelvin-Voigt models have some limitations 

in which they do not model viscoelastic materials for all 

possible conditions. Kelvin-Voigt model does not predict 

relaxation and Maxwell model is insufficient for creep test. 

Standard Linear Solid (SLS) is a combination of Maxwell 

and Kelvin-Voigt models. This model is a simple model 

which predicts creep and relaxation simultaneously. The 

three aforementioned viscoelastic models are schematically 

represented in Fig. 2. 
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Fig. 2 Schematic of 3 major viscoelastic models 

 

As depicted in Fig. 2, SLS model consists of a spring 

which is in parallel with a series of dashpot-spring pair. The 

right arm consists of a spring, km and a damper, c. This arm is 

typically called Maxwell arm. The left arm is simply a linear 

spring, k. 

Consider the system depicted in Fig. 2, in which a discrete 

point mass is linked to a stationary wall through a SLS unit. 

In what follows, it is considered that the mass is acted upon 

by a given force F(t) and the governing equations for its 

motion are tackled with. The governing equations can be 

written as follows 

 (1) 

 (2) 

In order to gain some insight into the behavior of this model 

in response to a given input force, a step-like constant force 

can be considered that is imposed on the stationary mass at 

the initial time. The governing equations for this case are 

simplified in (3) & (4). 

 (3) 

 (4) 

where, k M  , 
m m

k M  , and c 2 M k  . 

B. Numerical Method 

Since the analytical solution of this system of ordinary 

differential equations is a bit laborious, numerical integration 

is utilized in order to find the resulting response. In order to 

tackle with the problem numerically, Velocity Verlet 

integration methodology is one of the most commonly used 

algorithms. This is efficiently used to numerically integrate 

the Newton’s second law of motion. Given the position, 

velocity and acceleration of a point mass at a specific 

instance of time, the velocity and position after a short time 

interval, t , are determined. 

C. Forces 

For the sake of generality, the initial spacing between the 

microtubules is considered to be   times the initial spacing 

between two adjacent point masses in a given microtubule. 

The stiffness and damping coefficient of the tranverse links 

are assumed to be respectively   and   times of their 

counterparts in microtubular links. The system is assumed to 

be initially all at rest. 

The governing equations of motion for the two 

coordinates can be formulated as given in (5)-(6) 

 

 The governing equations have 5 main parts. The first 

right-hand side summation is over all the possible external 

forces acting on point masses indexed by i. The second and 

third summations are over elastic and dissipative forces 

affecting a point mass indexed by i through its links to other 

neighboring point masses or nodal points, where the serial 

damper and spring meet. In these equations a, b, c, and d are 

indicators of whether the neighborhood is one between two 

point masses in the same microtubule via a linear spring; 

between two transverse point masses via cross-linking 

proteins and a parallel damper; between a point mass and a 

nodal point through a spring; between a point mass and a 

node through a dissipative element. These indicators assume 

only binary values of unity and zero with respect to whether 

the respective neighborhood exists or doesn’t hold. More 

specifically, if a is set to unity and the others are set to zero, 

the neighborhood is the one between two point masses in the 

same microtubule through a linear spring. The first constant 

under the summations, ad, is called discontinuity indicator 

which also assumes values of unity or zero and indicates 

whether the neighborhood fades as a result of any possible 

discontinuity. αji and βji also represent the x and y 

components of unit vector directed from point mass j to point 

mass or node  i. In these equations   is the damping ratio of 

the motion in the normal direction of the applied forces. 

The last term in the governing equations refers to bending 

acceleration. In order to formulate the bending moment, 

three given point masses can be considered as depicted in 

Fig. 3. At any instance of time a plane can be constructed for 

each trio of neighboring points. The normal vector of this 

plane is calculated from Table 1. 
i ,i 1

n


 and 
i ,i 1

n


 are unit 

normal vectors pointing from mass i toward masses i + 1 and 

i - 1. ‘ξ’ and ‘η’ are components of    in the direction 

and normal to the . Angular deformation,   is 

measured with respect to ‘ξ’ and ‘η’ as can be seen in Table 

(5) 

(6) 
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1. In order to calculate ‘ξ’ and ‘η’, first we calculate the unit 

normal vector m  which stands normal to the  in the 

plane of three point masses. After the calculation of the 

angular deformation, the restoring moment and accelerations 

can be determined. Table 1 shows the calculation of bending 

acceleration and describes the parameters that are needed. 

TABLE I.  CALCULATION OF BENDING ACCELERATION 

 
 

 
Fig. 3 Representation of three discrete masses connected together 

III. GEOMETRY 

The simplified microtubular geometry proposed in [4] 

consists of a hexagonal array of 19 rows. The cross-sectional 

view of  three dimensional geometry reconstructed on our 

computational platform is presented in Fig. 4(a). Since at this 

stage, we tend to work with non-dimensional equations, the 

characteristic length scale is assumed to be the distance 

between two neighboring points in a bundle. According to 

[4] the microtubular spacing should be 4.5. In Fig. 4(a) 

dashed lines represents tau proteins and jots indicate the 

microtubule bundles. This Figure is in z-y plane. 

We modeled microtubule bundles in 2 dimensional 

frames. Each microtubule bundle has one point of 

discontinuity. The point of discontinuity is designated on a 

random basis and is assumed to be within the central 80% of 

the geometry length. According to the dimensions presented 

by [4] each row is an ensemble of 800 point masses. We 

have used a variety of number of point masses from 80 to 

800 and we assumed number of microtubules to be eight. A 

bird’s-eye view of the entire geometry is given in Fig. 4(b). 

The dashed lines represent cross-links attributed to tau 

proteins and blue lines show microtubule bundles in x-y 

plane. 

 

 

 

 
 

Fig. 4 (a) The cross-sectional view of a three dimensional geometry and (b) 

a view of the entire geometry 

IV. RESULTS AND CONCLUSION 

Material parameters were prepared from [4]. Now if the 

system depicted in Fig. 4(b), is acted upon on both sides by 

constant external forces affecting opposite to each other, it 

embarks on a time-varying deformation. The overall 

deformation of the system is defined as (7). The first and 

second summations are over the rightmost and leftmost 

points. ‘n’ and ‘L
*
’ are the number of microtubules and the 

initial length of the system. 
 

 (7) 

 The time-step should be not too large that the results are 

prone to considerable error, and not too small that the 

computation cost increases. Before starting the solution we 

try to cast equations into a non-dimensional form. The 

non-dimensional variables are defined in (8) that  , x0 

is the distance between each two neighboring masses in a 

bundle and f0=Kx0 is a characteristic value for the force 

imposed upon the system. Introducing these new variables 

gives rise to the non-dimensional equations of motion given 

in (9) and (10), where κ = km/k is itself a non-dimensional 

parameter. 
 

      (8) 

 (9) 

 (10) 
 

 

Using system with a SLS unit with 1 mass we found that 

appropriate value for time step is 0.0025. We modeled the 

fluid around the microtubules with a damper connected to 

each point mass that dissipates the energy of microtubules in 

x and y directions. The value of non-dimensional damping 

ratio is assumed to be 1.  

We solved the system for discrete mass numbers of 100, 400 

and 800 and the non-dimensional forces values of 0.1, 0.75, 

1 & 4. Fig.5 illustrates the dynamic response of 2D 

microtubule bundles consisted of 400 masses under different 

forces. 

Using information in fig. 5 we can assume that the steady 

state strain is the fourth degree polynomial function of non-

 
        (a)  

           (b) 
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dimensional force. So we can write an equation for the 

steady state strain and draw the steady state strain as a 

function of applied force as depicted in fig. 6. 

 
Fig. 5 Bundle Dynamic for 400 discrete masses for F*=0.1 (solid line), 

F*=0.75 (dotted line), F*=1 (dashed line) and F*=4 (solid thick line) 

 

 
 

 

Fig. 6 Steady State Strain as a function of force 

 

  If we decrease the number of single masses per 

microtubule bundles, discontinuities play more important 

role and dissipation becomes more prominent as it is pointed 

in Fig 7. Fig. 7 is prepared for f
*
=0.1 and compere 

microtubule dynamic response for discrete masses of 100 

and 400. 

 
Fig 7 Strain-Time diagram for the number of single mass per 

microtubule=100 (solid line) and 400(dashed line) 
 

In this step we check a two dimensional system of 

microtubule with 800 discrete masses per microtubule. We 

prepared Fig. 8 for different quantities of non-dimensional 

forces. Fig. 9 shows steady state behavior of a 2D axonal 

microtubule as a forth degree polynomial function of non-

dimensional applied force.  

As it is specified from Fig. 8, Fig. 7 and fig. 5, when we 

increase the number of discrete masses, the needed time to 

reach steady state growth. We are extending our model to 

simulate the rupture of axons under tension that is one of the 

main causes of stroke. 

 
Fig. 8 Bundle dynamics for 800 discrete masses for F*=0.1 (solid line), 

F*=0.75 (dotted line), F*=1 (dashed line) and F*=4 (solid thick line) 
 

 
 

 
Fig. 9 Steady State Strain as a function of force 

 

We received an appropriate model to compute the 

behavior of 2 dimensional axonal microtubules under 

suddenly applied end forces without accounting the effect of 

axonal rapture. To improve our model we will add this effect 

to our model. We also assumed the fluid around the 

microtubule bundles as dissipative elements with constant 

damping ratio of 1. We will calculate the exact behavior of 

the fluid around to receive an equation or constant value for 

damping ratio using an exact model in the future.  
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