
  

  

Abstract—An implantable retinal prosthesis has been 
developed to restore vision to patients who have been blinded 
by degenerative diseases that destroy photoreceptors. By 
electrically stimulating the surviving retinal cells, the damaged 
photoreceptors may be bypassed and limited vision can be 
restored. While this has been shown to restore partial vision, 
the understanding of how cells react to this systematic electrical 
stimulation is largely unknown. Better predictive models and a 
deeper understanding of neural responses to electrical 
stimulation is necessary for designing a successful prosthesis. In 
this work, a computational model of an epi-retinal implant was 
built and simulated, spanning multiple spatial scales, including 
a large-scale model of the retina and implant electronics, as 
well as underlying neuronal networks. 

I. INTRODUCTION 

Many people lose their sight due to degenerative diseases, 
such as macular degeneration or retinitis pigmentosa, which 
destroy photoreceptors over time. However, the retinal cells 
further downstream in their vision system remain viable. 
Artificial stimulation of these cells via systematic electrical 
stimulation through an epi-retinal implanted electrode array 
has been shown to create some vision in blind patients [1]. 
Clinical trials have been conducted to study the optimal 
stimulus parameters for such a system. The responses are 
based on the percept of the patient and have provided 
thresholds for the magnitude of current required to elicit a 
visual response, as well as described shapes and colors the 
subject sees [2]. These results are undeniably interesting and 
patients are given the ability to see some objects again. 
However, the system is lacking a correlation between the 
stimulus and the affected neural networks. The stimulation 
does not restore the lower-level processing that occurs in the 
retinal layers, which accounts for some contrast-detection, 
color, brightness, etc. [3] If the stimulus could be tailored to 
selectively stimulate specific types of cells, then natural 
vision restoration may be possible.  

Simulations of the system that incorporate the complexity 
of the neural networks and the stimulation electronics could 
be used for estimating the response and optimizing the 
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stimulus towards this goal. Numerical simulation methods, 
such as finite difference methods, have proven useful in 
studying the path of current due to a given stimulus by 
discretizing a retinal tissue model based on the tissue 
conductivity and solving for the voltage throughout the 
model [15]. However, these simulations lack the complexity 
and nonlinearity of the underlying neural networks. 
Variations of cable equations have been used for studying the 
complex nonlinear behaviors of single cells and networks of 
cells, predicting how they will respond to stimulation [5]. 
However, they usually consider the cell to be in a 
homogeneous medium and do not consider an accurate 
representation of the extracellular fields. 

Combining these two techniques, we create a multi-scale 
approach to modeling the affect of electrical stimulation on 
retinal tissue, taking advantage of the benefits of both 
systems. By including the complexity at the spatio-temporal 
scales of cellular networks, as well as the field calculations 
throughout the tissue and implant electronics, we essentially 
link the system level with the cellular level of the vision 
process in a single model. We apply a novel Admittance 
Method for the extracellular voltage calculations [4], and 
NEURON software [5] for calculating the effect at the 
cellular level, using cellular models based on Transmission 
Electron Microscopy (TEM) images of rabbit retina [6]. 
Software was written to link these simulation platforms, 
providing the Admittance Method voltage results as 
boundary conditions for the extracellular space in NEURON 
simulations. NEURON is then used to model the cellular 
activity. This model may serve as a platform for studying 
retinal prosthesis design at a high level of detail, with the 
overall goal of advancing epi-retinal prosthetic design to 
produce pseudo-natural vision to those who have lost their 
sight. In the following sections, the specifics of this model 
and how it may be used to simulate and study specific 
stimulation parameters are described. 

II. MODEL 

 The multi-scale model consists of two main components, 
one describing the retina at a system level, and the other 
describing the cellular network level. Fig. 1 provides plots of 
both models in a diagram describing how they are 
correlated. 

A. Large-Scale System Level 
First, a large-scale model was constructed, containing the 

layers of the retina, the vitreous humor, and an implanted 
electrode array. The model was discretized into a 3-
dimensional matrix of cubic voxels, each noted by a tag that 
is unique to a specific material type. The curvature of the 
retina and the depth of the layers were based on literature 
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[7],[8]. The resolution of the model is 5 µm per voxel and the 
size is 400x400x300 voxels. Each retinal layer was rippled to 
represent a more accurate representation of the boundary 
between layers. This was accomplished by varying the height 
of the layer due to a given 2D Gaussian plane. The height and 
width of the peaks in the plane were chosen based on 
approximate density and size of the cells inside each 
individual layer. After building the tissue model, a 2x3 
electrode array was added on top of the optic nerve layer in 
the retina, as shown in Fig. 1. The electrodes were based on 
the Argus-II design by Second Sight [9]. They are cylindrical 
with a diameter of 200 µm and a depth of 10 µm. Each voxel 
in the model is described by its resistivity. Values for the 
resistivity of the retinal layers are as found in literature for 
low frequency (below 100 Hz), and the electrodes were 
approximated with the properties of platinum. The resistivity 
values for all tissues are shown in Table 1 [8]. 

 

B. Small-Scale Cellular Network  
A computational model of a cellular network in the inner 

plexiform layer of the retina was built using highly 
anatomically and physiologically-accurate connectome data. 

TABLE I.  TISSUE RESISTIVITES 

Tissue Resistivity (!-m) 

Photoreceptors 50.50 

Outer Nuclear Layer 60.00 

Outer Plexiform Layer 70.00 

Inner Nuclear Layer 65.00 

Inner Plexiform Layer 18.00 

Ganglion Cell Layer 70.00 

Bipolar Cell Layer 70.00 

 

This data is based on nanoscale Transmission Electron 
Microscopy (TEM) images of rabbit retina, augmented by 
picoscale ultrastructural reimaging [11],[14]. Thousands of 
observed connections between cells in a 250 µm diameter sub 
volume of the inner plexiform layer were quantified, 
providing accurate data for use in a computational model. For 
the purposes of this paper, sixty cone bipolar cells that 
communicate with two ON ganglion cells were selected to be 
modeled and are shown in Fig. 1. This 250 µm diameter 
model was considered to be placed in the proper layers of the 
large-scale tissue model, residing in the cell-body layers in 
the bipolar and ganglion cell layers, as well as the inner 
plexiform layer between them, in which most of the 
communication between the two layers occurs. By 
duplicating the cellular model, the entire ganglion, bipolar, 
and inner plexiform layers in this model were populated with 
cone bipolar and ganglion cells. The morphology of the cells 
was then compartmentalized for use with NEURON 
software, as discussed in the next section.  

III. SIMULATION METHODS 

A. Admittance Method 
To simulate the electric field magnitude throughout the 

tissue-level model, a time-stepping multi-resolution variant 
of the admittance method (AM) was used [8]. In this method, 
a matrix describing the admittance (G), or resistance, 
throughout the model is defined. The diagonal of the matrix 
defines the resistance at each node, while the surrounding 
values define the resistances between nodes, producing a 
sparse, diagonal matrix. The admittance is described as in 
Equation 1, in terms of the conductivity and the distance in 
the x, y, and z directions.  

                       (1) 
 
  A current vector (I) is then defined, with current values 
applied to whichever nodes contain a source. A voltage 
vector (V) can then be solved for using G and I in Equation 

 
 

Figure 1. Diagram of multi-scale model, including (a) 3D plot of the discretized model of the retina with an electrode array and (b) top and side-view 
plots of the morphology of a neural network considered for simulation, including two ON ganglion cells and 60 cone bipolar cells.  
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Figure 2. Example 2D slice of a meshed model [4], including (a) an 
unmeshed slice of a model, using uniform cubic voxels, and (b) the same 
model after applying the multiresolution meshing algorithm with 
maximum size of 8 voxels per cell. 

 2. The linear system of equations is solved using a 
biconjugate gradient algorithm. 
 

               G V = I                                     (2) 
   
  Prior to building and solving this system, a 3D multi-
resolution meshing algorithm is applied to the model. It 
maintains minimal resolution surrounding boundaries, and 
increases the voxel size further away where the fine 
resolution is unnecessary. For example, near the boundaries 
between retinal layers, the resolution would remain 5 µm per 
voxel, whereas towards the center of the layers, the 
resolution may be as low as 20 µm per voxel. To help 
illustrate this process, an example of a 2D slice of a model 
meshed with this algorithm is shown in Fig. 2. By 
decreasing the number of nodes and edges, the 
computational complexity of the system is decreased. 
 

B. Connecting to NEURON  
The response to the electrical stimulation at the neural 

network level is solved for using NEURON software. 
NEURON uses a compartmentalization system for solving 
for membrane and axial parameters. The model is split into 
compartments based on the type of neuronal branch and the 
change in radii. Each compartment is modeled as a tapered 
cylinder with a cable circuit model, describing the intra-
cellular and membrane properties as circuital elements. The 
user can define the conductance, resistance, etc. for each 
compartment, as well as synaptic properties between cells. 
The connectome data used for this model was automatically 
converted to a NEURON-compatible format for describing 
the synaptic connections. Each synapse was then tested by 
applying a current clamp to the cell that is the source for each 
synapse and recording at the synaptic location on the target 
cell, ensuring there was a response. Also, a modified version 
of the built-in Hodgkin-Huxley mechanism was used to 
model the active mechanisms in the cells, in which the 
conductance of potassium, sodium, and calcium channels 
were specified. [5]   

The results from the AM simulation were applied to this 
model as boundary conditions. NEURON has a built-in 

mechanism called “extracellular,” which allows for two extra 
layers of potentials and resistances to be added in series with 
each compartment [5]. One of these layers was utilized. 3D 
linear interpolation was used to estimate the voltage at the 
center of each compartment based on the surrounding eight 
nodes in the AM model. This voltage was set to the 
extracellular potential value in this model for each time step. 
A diagram describing the link between these tools is shown 
in Fig. 3. NEURON can then simulate the effect those 
voltages at each compartment have on the membrane and 
axial voltage, showing whether or not specific cells spike. 

IV. RESULTS 

An example simulation was conducted to test the model. 
A single cycle of a sinusoidal current pulse with a magnitude 
of 10 µA and a frequency of 10 Hz was applied to one of the 
electrodes in the large-scale model shown in Fig. 1 over 20 
time steps. The voltages throughout the model were solved 
for using the admittance method. These voltages were then 
used to calculate the electric field in the x, y, and z directions 
by taking the ratio of the change in voltage and the change in 
distance in each respective direction. The magnitude of the 
electric field in the model for each step can then be solved for 
using Equation 3. A 2D slice of the electric field magnitude 
at the location of the stimulation at one time step is shown in 
Fig. 4. 

                              (3) 

 The voltage results were interpolated to produce an 
extracellular voltage value for each compartment in the 
NEURON model for the ON ganglion and bipolar network. 
A NEURON simulation was run, producing a membrane 
voltage value for every compartment at every millisecond. A 
plot showing the resulting membrane voltage for 1, 3, and 5 
milliseconds after the sinusoidal pulse stimulation on a 
ganglion cell and a bipolar cell are shown in Fig. 4. The 
compartments are plotted as cylinders, which are color-coded 
based on the membrane voltage. Blue is the resting voltage 
defined as -60 mV and red is a voltage above +20 mV.  

 
 

 
Figure 3. Diagram of the link between the admittance method results and 
NEURON. An extracellular voltage for each compartment (V) is 
estimated by 3D linear interpolation of the voltages at the nearest 
surrounding nodes from the admittance method simulation results. 
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(c)                                     (d)                                     (e) 

Figure 4. Simulation results. (a) Reference 2D slice, (b) Electric field 
magnitude at one time step during an admittance method simulation, (c-e) 
Color-coded membrane potential on a single ganglion and bipolar cell at 1, 
3, and 5 milliseconds, respectively. 

 
V. DISCUSSION 

This multi-scale computational model for a retinal 
prosthetic is just one step towards advancing the prosthesis 
design. It can serve as a testbench for testing many different 
parameters, such as the effect of the location of the ground or 
firing electrodes, stimulus magnitude or shape, etc. One 
specific application that is currently being pursued is 
optimizing the stimulus to stimulate certain types of cells. 
This directly applies to the goal of mimicking natural vision. 
Driving color percepts will require differentially stimulating 
surviving midget pathways previously linked to a CNS color 
network. Modeling such networks will, in turn, require access 
to primate or human connectomes. If a person is in bright 
light during the day, mostly circuits involving cones would 
need to be stimulated, and mostly those with rods in the case 
of less lighting [3].  This will require applying more complex 
channel mechanisms to describe the frequency dependence of 
specific cell types [10], and further research for deciding on 
the choice of stimuli that may elicit a response in a desired 
cell type, but not others.  

The model can also be expanded to include more 
interesting neural circuits that have been observed during the 
connectome research used to build the neural network 
models. There are far more circuits than ON-ganglion cell 
networks that can be incorporated [11]. There is feedforward 
and feedback inhibition, electrical coupling between bipolar 
cells, sheets of amacrine cells, etc. In addition, the cells 
shown and discussed that are part of this connectome model 
do not include axons. These may be added to the 
computational model since they are likely the location of 
extracellular electrical stimulation. More spatial scales can be 
integrated as well, including smaller scales down to the 
molecular level for describing the synapses and channel 
mechanisms with even higher complexity. It has been shown 
that small changes at the molecular level can have an impact 
on the neural-level reaction to electrical activity [12]. 
Through these modifications, a highly accurate model for 
studying many different research topics involving circuitry in 
the retina may be studied. For example, variations in system 
performance induced by pathologic network remodeling [13] 

can be assessed by comparison to this normal retinal 
framework. This approach can be extended to 
neuropathologies in general. 

The model described in this paper combines two spatio-
temporal scales of retina that are prevalent in literature. 
Linking them creates a simulation tool that will hopefully 
prove useful across multiple disciplines, in understanding the 
interaction between electric fields and tissue reaction, as well 
as the underlying electrophysiological phenomena.  

REFERENCES 
[1] M. S. Humayun, J. D. Weiland, G. Y Fujii, R. Greenberg, R. 

Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. 
Dagnelie, and E. de Juan, Jr., “Visual perception in a blind subject 
with a chronic microelectronic retinal prosthesis,” Vision Research, 
vol. 43, pp. 2573-2581, 2003.  

[2] M. Mahadevappa, J. D. Weiland, D. Yanai, I. Fine, R. J. Greenberg, 
and M. S. Humayun, “Perceptual thresholds and electrode impedance 
in three retinal prosthesis subjects,” IEEE Trans. Neural Syst. Rehabil. 
Eng., vol. 13, no. 2, June 2005. 

[3] E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of Neural 
Science. New York: The McGraw-Hill, 2013. 

[4] C. J. Cela, R. C. Lee, and G. Lazzi, “Modeling cellular lysis in 
skeletal muscle due to electric shock,” IEEE Trans. Biomed. Eng., vol. 
58, no. 5, May 2011. 

[5] N. T. Carnevale and M. L. Hines, The NEURON Book.   Cambridge, 
UK: Cambridge University Press, 2006. 

[6] J. R. Anderson, S. Mohammed, B. Grimm, B. W. Jones, P. Koshevoy, 
T. Tasdizen, R. Whitaker, R. Marc, “The Viking viewer for 
connectomics: scalable multi-user annotation and summarization of 
large volume data sets,” J. Microscopy, vol. 241, pp. 13-28, 2011. 

[7] V. Spitzer, M. J. Ackerman, A. L. Scherzinger, and D. Whitlock, “The 
visible human male: A technical report,” J. Amer. Med. Inform. 
Assoc., vol. 3, no. 2, pp. 118-130, Apr. 1996. 

[8] C. J. Cela, “A multiresolution admittance method for large-scale 
bioelectromagnetic interactions,” Ph.D. dissertation, Dept. Elect. Eng., 
N. Carolina Univ., Raleigh, NC, 2010. 

[9] A. K. Ahuja and M. R. Behrend, “The Argus II retinal prosthesis: 
Factors affecting patient selection for implantation,” Prog. Retin. Eye 
Res., vol. 36, pp. 1-23, 2013. 

[10] D. Freeman, J. S. Jeng, S. K Kelly, E. Hartveit, and S. I. Fried, 
“Calcium channel dynamics limit synaptic release in response to 
prosthetic stimulation with sinusoidal waveforms,” J. Neural Eng., 
vol. 8, pp. 1-19, 2011.  

[11] R. E. Marc, B. W. Jones, C. B. Watt, J. R. Anderson, C. Sigulinsky, S. 
Lauritzen, “Retinal connectomics: towards complete, accurate 
networks,” Prog. Retin. Eye Res., vol. 37, pp. 141-162, Nov. 2013. 

[12] J-M. C. Bouteiller, S. L. Allam, E. Y. Hu, R. Greget, N. Ambert, A. F. 
Keller, S. Bischoff, M. Baudry, and T. W. Berger, “Integrated 
multiscale modeling of the nervous system: predicting changes in 
hippocampal network activity by a positive AMPA receptor module,” 
IEEE Trans. Biomed. Eng., vol. 58, no. 10, pp. 3008-3011, Oct. 2011.  

[13] R. E. Marc, B. W. Jones, C. B. Watt, and E. Strettoi, “Neural 
Remodeling in Retinal Degeneration,” Prog. Retin. Eye Res., vol. 22, 
pp. 607-655, 2003. 

[14] J. R. Anderson, B. W. Jones, C. B. Watt, M. V. Shaw, J-H. Yang, D. 
DeMill, J. S. Lauritzen, Y. Lin, K. D. Rapp, D. Mastronarde, P. 
Koshevoy, B. Grimm, T. Tasdizen, R. Whitaker, R. E. Marc, 
“Exploring the retinal connectome,” Molecular Vision, vol. 17, pp. 
355-379, 2011. 

[15] J. Xie, G-J. Wang, L. Yow, C. J. Cela, M. S. Humayun, J. D. Weiland, 
G. Lazzi, and H. Jadvar, “Modeling and percept of transcorneal 
electrical stimulation in humans,” IEEE Trans. Biomed. Eng., vol. 58, 
no. 7, July 2011. 

 

6103


