
  

  

Abstract—A methodology, based on principal component 
analysis, is proposed to quantify beat to beat Seismocardiogram 
changes. The proposed method was tested over a population of 
94 subjects including 35 ischemic heart disease patients. The 
results showed that there was an insignificant overlap between 
the diseased and the healthy populations in the number of 
principal components (NPC) and that further development of 
this method might yield a classification index for myocardial 
abnormalities. In addition such an index has potential utility in 
patient monitoring.  

I. INTRODUCTION 

Every heartbeat sets the body into mechanical vibrations. 
These vibrations have been recorded using different 
methodologies for the past century and have been given 
different names based on the recording site or measuring 
technology. Two very important types of such mechanical 
signals are Ballistocardiograms (BCG) and 
Seismocardiograms (SCG).  BCGs are essentially created by 
the movement of the center of gravity of a body through 
blood circulation, whereas SCGs are created by local 
vibrations of the chest, and are recorded using accelerometers 
[1]. We consider Seismocardiogram the low frequency 
component of the accelerograms recorded from the chest. If 
the same accelerograms are high-pass filtered (25 Hz) they 
correspond to the phonocardiogram [2]. Fig. 1 compares 5 
SCG segments from a healthy and a diseased subject. As Fig. 
1 indicates, there is greater similarity between SCG segments 
of the healthy subject.  

There have been some attempts to quantify such similarities. 
Issac Starr, a pioneer of BCG research, came up with a 
qualitative BCG classification from beat to beat morphology 
changes and then used this classification to separate subjects 
into four classes. In the first class, all BCG complexes are 
normal in contour. In the 2nd class, the majority of the 
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complexes are normal, but one or two of the smaller 
complexes of each respiratory cycle are abnormal in contour. 
In the 3rd class the majority of the complexes are abnormal 
in contour, usually only a few of the largest complexes of 
each respiratory cycle remaining normal and in the 4th class 
there is such complete distortion that the waves cannot be 
identified with confidence and the onset of ejection could 
not be located without a simultaneous ECG recording [3].  

Some preliminary results on quantification of beat to beat 
morphological changes of BCG was reported using signal to 
noise ratios [4]. The same group took a similar approach for 
quantification of morphological changes in processing the 
higher frequency component of accelerograms recorded 
from the chest.  These components correspond to 
phonocardiogram’s S! and S! complexes [5].  

They assumed that each complex could be modeled as an 
underlying “template” function that was scaled in amplitude 
from one segment to another. Their model included a time-
delay representing the interval between S! and S!, as well as 
considering the unknown measurement noise. They estimated 
the signals with their proposed model, and indicated that the 
obtained signal-to-noise ratio (SNR) of healthy subjects was 
more than diseased subjects. Using such an approach is based 
on hypothesizing a fixed template for different components 
of S! and S! complexes. Such a hypothesis may not always 
be satisfied. Moreover, the validation of their approach was 
conducted on a small number of subjects.  

 

 
Figure 1. Five SCG segments of a healthy subject (top plot) and an 

unhealthy one diagnosed with ischemic heart disease (bottom plot). The 
similarity between SCG segments of the healthy subject is more. 

In this paper, a method for quantifying the similarity among 
SCG segments is introduced that is not dependent on 
morphological conditions. This method is introduced in 
section II, and is tested on a database of SCG signals 
consisting of 59 healthy subjects, and 35 with ischemic heart 
disease.  
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II. METHODS 

In order to quantify the similarity between SCG segments, 
our proposed method included different stages as in Fig 2. 
These stages are discussed in the following sections. 

A. Subjects and Data Acquisition 
The SCG signal was measured with a high sensitivity 
piezoelectric accelerometer (Brüel & Kjær model 4381, 
Nærum, Denmark) using a National Instrument data 
acquisition system with sampling frequency of 1000 Hz. The 
participants were in the supine position and the signals were 
recorded in back-to-front direction, perpendicular to the 
body surface. The Electrocardiogram (ECG) signal was 
simultaneously recorded.  
The patient population (n=35, Age=66.1±8.2 years,   
Weight=84.2±21.19 kg, Height=169.8±8.6 cm) were 
recruited from healthy heart program at Burnaby General 
Hospital under an ethics approval from Fraser Health 
Authorities. These patients were diagnosed with ischemic 
heart disease (IHD) and were being monitored by a 
cardiologist at the hospital to improve their cardiac 
performance. 
The healthy population (n=59, Age=32.1±4.7, 
Weight=79±11, Height=173.4 ± 7.2) were selected mainly 
from Simon Fraser University students and staff under an 
ethics approval from the university and informed consent 
was documented for every subject.   

B. Segmentation and Preprocessing  
The SCG signals were first segmented using their 
corresponding ECG signals. Each segment of SCG was 
considered from R to R peaks of ECG, but shifted by 200 
samples to the left. After segmentation, the preprocessing 
was conducted on each signal. In this stage, each segment 
was normalized to have a zero-mean and a unit variance.  

C. Length Equalization and Alignment 
For each SCG signal, the lengths of all segments were 
equalized to their maximum length using zero padding. The 
SCG segments then aligned using Woody’s approach [6]. 
Woody’s is an iterative algorithm that aligns the segments 
based on the maximum correlation between each segment 
and the average of segments. The average can be updated in 
each iteration to reach the desired alignment accuracy. 

D. Quantifying the Similarity 
In order to quantify the similarity between SCG segments, 
principal component analysis (PCA) was chosen. PCA is a 
very popular method for analysing the variations among 
different data points.  PCA finds the direction that maximizes 
the variation of projected data [7].  

To employ PCA, the data are first organized in a matrix D , 
then the covariance matrix C is computed,  

C =
1

m − 1
DD!  

(1) 

where D! denotes transpose of matrix D, and m is the length 
of each segment. Finally, the eigenvalues (λ) and 
eigenvectors (υ) of D are computed as follow, 

Segmentation

Preprocessing Normalizing

Using ECG R-Peaks

Length- Equalization Zero-Padding to Max. 
Length of Segments

Alignment Woody Algorithm

Quantifying the 
Similarity PCA Algorithm

Subjects and Data 
Acquisition

 
Figure 2. The schematic diagram of the proposed method for 

quantifying the similarity between SCG segments 

Cυ! = λ!υ!                      i = 1, 2,… ,m (2) 

In the Eq. (2), it is assumed that eigenvalues are sorted in the 
descending order, i.e. λ! ≥ λ! ≥ ⋯ ≥ λ!. Considering this 
assumption, the principal components P (in the descending 
order) can be computed as, 

P! = Dυ!                      i = 1, 2,… ,m (3) 

The principal components P!, are the projections of the 
original data in the direction that have the maximum 
variance. P! have the maximum variance after P!, and so 
forth for P!,… , P!. The set of all principal components is as 
large as the original set of data. However, it is common to 
choose the number of principal components whose sum of 
variances reaches a portion (α) of the total variance of the 
original data. The number of principal components (NPC) 
can be computed as,  

Var P! = α diag C
!"#

!!!

                                  0 < 𝛼 < 1 
(4) 

In the Eq. (4), diag C  represents the diagonal elements of 
the covariance matrix C, which are the variances of the 
original data.  

Basically, NPC is a variable that can quantify the similarity 
between SCG segments. A large value for NPC indicates 
more variation (more dissimilarity); whereas a small value 
shows fewer variations (more similarity).  

For this study, the SCG signals of 94 subjects were 
investigated; in which 59 were healthy, and 35 were diseased. 
The segments of each SCG signal were organized in a matrix 
D!×!, where m and n indicated the length of each segment, 
and the number of segments respectively. PCA algorithm was 
employed using MATLAB platform. The number of 
principal components (NPC) was selected for α = 80% 
according to Eq. (4). NPC was computed for all the subjects, 
and Fig. 3 shows a histogram of the number of subjects 
versus NPC. Fig. 4 displays a box-plot of NPC indicating 
max, min, median, percentiles, outliers, and range of data 
both for healthy and diseased subjects.  
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As Fig. 3 shows, most of the healthy subjects (41 out of 59) 
had NPC = 1, and higher values of NPC such as 6 – 9 only 
belonged to diseased subjects. For other subjects, by 
increasing the NPC value, the number of healthy subjects 
reduced whereas the number of diseased subjects increased 
(e.g. NPC = 3 and in comparison with NPC = 1, and NPC = 
9). Using boxplot, Fig. 4 shows the range of NPC value for 
diseased subjects to be more compared to healthy ones. In 
addition, the maximum NPC for diseased subjects (9) was 
approximately two times greater than the maximum (5) for 
healthy ones.  

Another useful analysis is using the receiver operation 
characteristic (ROC) curve [8] which is depicted in Fig. 5. 
This curve shows the true-positive-rate (TPR) versus the 
false-positive-rate (FPR) for a binary classifier with different 
thresholds THR, 

THR =   1, 2,… , 9 (5) 

In each threshold THR, the binary classifier assigns a positive 
class (+1) for NPC values greater than or equal to THR. In 
this analysis, it is assumed that diseased subjects are in the 
positive class (+1), and healthy subjects are in the negative 
class (-1). The ideal point in the ROC plane is (FPR=0, 
TPR=1) which corresponds to 100% classification accuracy 
for both classes. As Fig. 5 indicates, the nearest point on 
ROC curve to the ideal point was obtained for (FPR= 0.3051, 
TPR= 0.8571). This point corresponded to THR=2, in which 
the classification accuracies were 85.7% and 69.5% for 
diseased and healthy subjects respectively. 

III. DISCUSSION AND CONCLUSION 

In this paper, a method for quantifying the similarity between 
SCG segments was introduced. In our method, the number of 
principal components (NPC) was proposed as a quantity that 
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Figure 3. The histogram of number of subjects versus NPC. Smaller values of NPC indicate more similarity between segments. Most 

of healthy segmenst have NPC = 1, and higer values of NPC has occurred for diseased subjects. 
 

N
um

be
r o

f P
rin

ci
pa

l C
om

po
ne

nt
s (

N
PC

)

0

2

4

6

8

10

 

 

Healthy Diseased  
Figure 4. The boxplot of healthy and diseased subjects indicating, max, min, median, percentiles, outliers, and range of data. 
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Figure 5. The receiver operation characteristic (ROC) curve for classification between healthy and diseased subjects 

 

6094



  

could indicate the similarity. Basically, a lower value of NPC 
showed less variance or more similarity between SCG 
segments, whereas, a higher value of NPC indicated more 
dissimilarity. Our proposed method is applicable to any 
signal with a periodic structure; however in this study we 
employed it on SCG signals to differentiate between healthy 
and diseased subjects. It should be noted that there was an 
age difference among the healthy and diseased subjects, 
which also could contribute to morphological changes. The 
effect of such an age difference on the value of NPC should 
be independently investigated in future studies by age 
matching the two populations.  

Our hypothesis was that the similarity between segments of 
healthy subjects was greater than the diseased ones. Our 
results confirmed this hypothesis, and NPC indicated a very 
good separation among healthy/diseased subjects.  
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