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Abstract— This study was aimed at comparing two 

alternative information-theoretic approaches for the combined 

analysis of heart rate variability (HRV) and respiration 

variability (RV). The approaches decompose the predictive 

information about HRV in two terms, quantifying respectively 

the information stored into HRV and that transferred to HRV 

from RV. Storage and transfer were assessed by the popular 

self entropy (SE) and transfer entropy (TE) measures, as well as 

by the alternative conditional SE (cSE) and cross entropy (CE) 

measures. The comparison was performed at a theoretical level, 

computing the exact values of the four measures for simulated 

cardiorespiratory dynamics, and on real data, estimating the 

measures from RV and HRV time series taken from healthy 

subjects during head-up tilt and paced breathing protocols. 

Both analyses suggested that, for the study of cardiorespiratory 

interactions which are mostly unidirectional from RV to HRV, 

the decomposition evidencing cSE and CE is more suitable to 

describe respiratory sinus arrhythmia and its modifications 

related to changes in cardiorespiratory interactions. 

I. INTRODUCTION 

Heart rate variability (HRV) is known to reflect the short-
term cardiac autonomic control as the result of the combined 
activity of several physiological regulation mechanisms [1]. 
Respiratory sinus arrhythmia (RSA), i.e. the component of 
HRV which occurs in synchrony with respiration, is of 
particular importance as it has been reported to be a 
meaningful indicator of vagal activity [2]. In recent years, 
several time series analysis methods have been proposed to 
study the short-term dynamics of HRV, as well as to assess 
their link with respiration variability (RV), in an attempt to 
describe RSA in quantitative terms [3]. A popular approach 
is that framed in the information domain, which provides 
entropy-based measures of regularity of HRV and of RV-
HRV coupling indicative of cardiorespiratory interactions 
[4]. The information-theoretic framework allows to quantify 
in a natural way the predictive information carried by HRV, 
and to decompose it in two terms, related to the storage of 
information within HRV dynamics and to the information 
transfer from RV to HRV [5]. The latter term is commonly 
quantified by means of the well-known transfer entropy (TE) 
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[6], while information storage is assessed by the so-called 
self entropy (SE), a quantity complementary to popular 
measures of complexity like approximate entropy, sample 
entropy, or corrected conditional entropy [5,7]. 

Instead of using TE and SE, the predictive information 
about HRV can be also decomposed eliciting alternative 
measures of information transfer and storage, known as cross 
entropy (CE) and conditional SE (cSE), which result from 
inverting the factors of entropy decomposition [5]. The aim 
of this study is to test whether, in the context of 
cardiorespiratory variability analysis, CE and cSE quantify 
better than TE and SE the information transfer from RV to 
HRV reflecting RSA, and the information storage reflecting 
predictable HRV dynamics unrelated to RV. To this end, the 
two information decompositions are compared in synthetic 
coupled processes for which the exact values of TE, SE, CE 
and cSE can be computed numerically, and in real RV and 
HRV time series measured from healthy subjects during tilt 
test and paced breathing protocols. 

II. METHODS 

A. Entropy Decomposition in Bivariate Systems 

The goal of entropy decomposition applied in the 
framework of information dynamics [7] is to identify the 
causal sources of the temporal statistical structure of a 
dynamical system interacting with other systems. Here we 
consider the case of two dynamical systems described by the 
bivariate stochastic process {X ,Y}. Let us denote as Xn and 
Yn the random variables obtained by sampling the processes 
at the present time n, and as Xn

─
=[Xn-1 Xn-2 ···] and Yn

─
=[Yn-1 

Yn-2 ···] the vector variables describing the past of the 
processes up to time n–1. The uncertainty about the present 
state of an assigned target process, say Y, is quantified by its 
entropy, H(Yn), and the amount of uncertainty about Yn that is 
resolved by the past of the whole bivariate process is 
quantified by the so-called prediction entropy (PE) 

 P
Y
 = I(Yn ; Xn

─
  Yn

─
) , (1) 

where I(·;·) stands for mutual information (MI) and  
denotes vector concatenation. Exploiting the chain rule for 
MI, the PE can be decomposed as (decomposition D1) 

 P
Y
 = S

Y
 + T

X→Y , (2) 

where SY = I (Yn ; Yn
─
) is the SE of Y, measuring how much of 

the uncertainty about the present of Y can be resolved by its 
own past, and TX→Y = I( Yn ; Xn

─ 
| Yn

─ 
) is the TE from X to Y, 

measuring how much of the uncertainty about Yn – that was 
not resolved by its own past – can be resolved by the past of 
X (I(·;·|·) denotes conditional MI (CMI)). The formulation in  
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Figure 1.  Graphical representation and entropy decomposition for the 

bivariate process {X, Y} defined in (5). The causal statistical structure of 

the joint process is depicted as a time series graph showing all time-lagged 

effects (a), and as a condensed graph showing only the effects between the 

present and the whole past of X and Y (b). The PE decompositions 

evidencing TE and SE (D1), or cSE and CE (D2), are shown for the target 

process Y (c) and for the target process X (d). 

(2) is very popular because it evidences SE and TE, which 
are known measures of information storage and transfer [5-7] 
widely used in the study of dynamical processes. A less 
popular, yet equally valid, way to decompose the PE is to use 
the following decomposition (D2) [5] 

 P
Y
 = C

X→Y
 + S

Y|X , (3) 

where CX→Y = I (Yn ; Xn
─
) is the CE from X to Y, measuring 

information transfer as the uncertainty about Yn that can be 
resolved by the past of X, and SY|X = I (Yn ; Yn

─ 
| Xn

─ 
) is the 

cSE of Y given X, measuring information storage as the 
amount of uncertainty about Yn that was not resolved by the 
past of X but is resolved by the past of Y. 

B. Computation of Information Dynamics Measures 

The practical computation of the measures appearing in 
(2) and (3) presupposes to estimate the CMI of high-
dimensional vector variables. While model-free approaches 
are recommended when nonlinear effects are relevant, a 
conspicuous amount of cardiorespiratory variability can be 
explained by linear models [8-10]. Therefore in this study we 
adopt the assumption of Gaussianity and use the exact 
expressions that hold in this case [8]. The use of exact 
expressions has also the advantage of allowing analytical 
comparison of the measures of transfer and storage. 

If the bivariate process {X,Y} has a joint Gaussian 
distribution, the MI between Yn and the generic vector 
variable V, and the CMI between Yn and V conditioned to the 
vector variable W can be written as 
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where (Yn) is the variance of Yn and ( Yn | V ) is the 
partial variance of Yn given V, i.e., the variance of the 
residuals of a linear regression of Yn on V. Additionally, 
under the Gaussian assumption the process {X,Y} can be 
fully represented as a bivariate vector autoregressive (VAR) 

process, and this allows expressing ( Yn | V ) in terms of the 
VAR coefficients for any conditioning vector V; the 
procedure is essentially based on solving the Yule-Walker 
equations that relate the covariance of {X,Y} to the VAR 
coefficients (details can be found in Ref. [8]). With this 
procedure, computation of the terms of D1 and D2 entails 
identification of the VAR model fitting the available data, 
followed by computation – starting from the estimated VAR 
coefficients – of the partial variances to be used as in (4) to 
yield estimates of PE, SE, TE, CE and cSE. 

III. SIMULATION STUDY 

In order to investigate the differences between the two 
entropy decompositions presented above, the theoretical 
profiles of the measures of information dynamics were 
studied in simulated VAR processes. First, we considered the 
simple bivariate process of order 2 defined as 
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, (5) 

where n and n are independent Gaussian white noise 
processes with zero mean and unit variance. The causal 
statistical structure of the process (5) is fully determined by 
the autodependency of X on its  past at lags 1 and 2, and by 
the coupling from X to Y at lag 1. This structure is 
conveniently represented in the time series graph of Fig. 1a 
showing all time-lagged effects, and in the condensed graph 
of Fig. 1b reporting only the causal relations between the 
past and present of the two processes. From these 
representations one would expect that, for the process Y, the 
predictive information is entirely due to information transfer 
from X to Y, manifested through the effect Xn

─
→Yn, and that 

the information storage is null because of the absence of an 
effect from Yn

─
 to Yn. Looking at the values of information 

dynamics measures of Fig. 1c (computed with a1=1.27,    
a2=-0.81, c=0.5) we see that these expectations are met only 
when D2 is adopted to decompose the PE, as in this case we 
have SY|X=0 and PY=CX→Y. On the contrary, D1 yields a 
misleading indication about the presence of information 
storage (SY>0) and a consequent underestimation of the 
information transfer (TX→Y<PY). In this case, even though 
Yn
─
→Yn does not exist, Yn

─
 and Yn are not independent 

because they are both caused by Xn
─
 (Fig. 1b): this common 

driver effect determines a nonzero SE; conversely, cSE is 
zero because Xn

─
 is conditioned out in the computation of 

information storage. On the other hand, D1 appears more 
suitable for decomposing the predictive information about 
the process X. Indeed, even if there is no causality Yn

─
→Xn, 

the decomposition D2 yields nonzero information transfer 
and underestimates the storage (CY→X>0, SX|Y<PX); again, 
these misleading values are due to common driver effects of 
Xn
─
, in this case directed to both Yn

─
 and Xn, originating a 

spurious transfer from Yn
─
 to Xn. On the contrary, the fact that 

TE is formulated by conditioning on the past of the target 
process (in this case, X) prevents the information storage in 
Xn
─
 from being mistakenly interpreted as having been 

transferred from Y, so that D2 yields TY→X=0 and SX=PX. 
The analysis presented above suggests that the entropy 

decomposition  D2  based  on  CE  and  cSE  may  be  more 
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Figure 2.  Entropy decomposition for different parameter settings of the 

bivariate process {R, H} defined in (6). Profiles of the power spectral 

densities of the simulated RV ( SR( f ) ) and HRV ( SH( f ) ), and of the PE 

decompositions evidencing TE and SE (D1) or cSE and CE (D2), are 

depicted while simulating an increased RSA (a), a shift in the symphato-

vagal balance (b), and a shift in the respiratory frequency (c). 

appropriate than the classic decomposition D1 based on SE 
and TE when the target process does not have feedback 
causal effects on the source process, i.e., when interactions 
are unidirectional from source to target. This situation is 
expected to occur in cardiorespiratory variability where 
respiration acts as an exogenous signal on cardiac dynamics, 
i.e. RV affects HRV without being affected by it [9,11]. To 
perform further investigation of information dynamics in this 
context, we studied the simulated VAR process designed to 
reproduce realistic cardiorespiratory interactions: 
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where the processes R and H represent respectively RV and 

HRV, and n and n are independent Gaussian white noises 
with variances set to 2 and 1. The autodependency effects 
are set to generate autonomous oscillations in the two 
processes at the frequencies typical of cardiorespiratory 
variability. This was obtained placing pairs of complex-

conjugated poles, of modulus  and phase 2f, in the 
complex plane representation of the processes. Specifically, 
very low frequency (VLF) and low frequency (LF) 
oscillations are obtained for the simulated HRV setting poles 

with VLF=0.2, fVLF=0.03 and LF=0.8, fLF=0.1 for the process 
H, and high frequency (HF) oscillations are obtained for the 

simulated RV setting poles with HF=0.9, fHF=0.3 for the 
process R. The VAR coefficients resulting from this setting 
are  
a1=-0.556, a2=-0.81, b1=1.687, b2=-1.189, b3=0.303,  
b4=-0.026. Then, the HF rhythm is transmitted from RV to 
HRV imposing causality from R to H at lags 1 and 2, and 
weighing this simulated cardiorespiratory coupling by the 
parameter c. Fig. 2 shows the power spectral densities of RV 
and HRV obtained with different parameter settings. 

The behavior of the information dynamics measures was 
studied at varying the simulation parameters. First, the 
coupling c was changed from 0 to 1 to simulate an increasing 
RSA, documented by the growing HF peak in the spectral 
density of the simulated HRV (Fig. 2a). This determined an 
increase of the PE, that was entirely interpreted as 
information transfer according to D2 (CR→H increases with c, 
SH|R is kept constant); this interpretation is more meaningful 
than that provided by D1, which suggested a loss of storage 
(SH decreases with c), and a consequent stronger transfer 
(TR→H increases more than CR→H to compensate the drop of 
SH), not easy to explain because the internal dynamics of the 
process H were kept unchanged. Then, we simulated a shift 
in the sympatho-vagal balance toward sympathetic activation 

and vagal deactivation by setting LF=0,...,0.8 and c=1–LF, 
in order to get a rise in the LF power and a simultaneous fall 
in the HF power of HRV (Fig. 2b). Again, the imposed 
changes were documented well by decomposing the PE 
through D2, as we see an increasing information storage 
(higher SH|R, reflecting the enhanced internal dynamics of H) 
and a decreasing transfer (lower CR→H, reflecting the 
weakened coupling from R to H); similar results were found 
using D1, though with a non-monotonic behavior of the SE 
which is of difficult interpretation. Finally, we simulated a 
shift in the respiratory frequency by decreasing fHF from 0.3 
Hz to 0.1 Hz. Slowing the HF rhythm of HRV determined its 
enhancement and its progressive entrainment with the LF 
rhythm (Fig. 2c) that was reflected by a higher predictive 
information (PH increases for lower fHF). This phenomenon is 
meaningfully explained in terms of cardiorespiratory 
interactions w D2 is used to decompose the PE, as the 
changes observed for the predictive information are fully 
seen as due to information transfer (CR→H increases and SH|R 
is constant for lower fHF). The use of D1 brings to an 
opposite interpretation, as the increased PE is ascribed to 
storage effects (SH increases and TR→H decreases for lower 
fHF) although no changes in the internal dynamics of HRV, 
were simulated in this case. 

IV. APPLICATION TO CARDIORESPIRATORY VARIABILITY 

The two proposed entropy decompositions were applied 
to HRV and RV time series measured from young healthy 
subjects during head-up tilt (HUT, 15 subjects (9 males), 
25.2±2.6 yrs) and paced breathing (PB, 16 subjects (7 
males), 26.0±2.4 yrs) [11]. HRV and RV were measured 
respectively as the sequence of the consecutive RR interval 
durations from the ECG (series H), and as the values of the 
respiratory nasal airflow signal sampled at each R-peak of 
the ECG (series R). Synchronous time series of 300 beats 
were taken during HUT with subjects breathing 
spontaneously in the supine (SU) and 60° upright (UP) body 
positions, and during PB with subjects lying supine and 
breathing spontaneously (SP) or following a metronome 
oscillating at 0.2 Hz, 0.25 Hz or 0.3 Hz. The analysis was 
performed identifying a VAR model on each pair of series 
through least-squares estimation, and optimizing the model 
order by the Bayesian Information Criterion [10]. 

The results of entropy decomposition are shown in Fig. 3 
for the HUT protocol, and in Fig. 4 for the PB protocol. 
During HUT (Fig. 3) the decompositions D1 and D2 yielded 
concordant  results.  The predictive information  about HRV 
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Figure 3.  Entropy decomposition of HRV and RV for the HUT protocol. 

The PE of the HRV series, PH, computed in the supine (SU) and upright 

(UP) conditions is decomposed through D1 evidencing SE and TE, or 

through D2 evidencing cSE and CE. * p<0.05, ** p<0.005 SU vs. UP 

(Wilcoxon sign rank test for paired data). 

increased significantly with the transition from SU to UP, as 
a result of an increase of information storage (measured by 
SE or cSE) and a concomitant decrease of information 
transfer (measured by TE or CE). Similarly to what was 
shown at a simulation level in Fig. 2b, these trends can be 
ascribed to the rise of the LF component, and fall of the HF 
component, which are commonly observed after tilt. 
Physiologically, the higher storage and lower transfer are 
related to the reduced RSA, and the corresponding 
sympathetic activation and vagal deactivation, induced by 
the orthostatic stress [1,11]. 

During the PB protocol, the PE showed a tendency to 
increase for progressively lower breathing rates (Fig. 4). In 
this case, the two entropy decompositions yielded an 
opposite interpretation about how the predictable dynamics 
in HRV are explained in terms of information storage and of 
transfer from RV. Indeed, the higher PE observed during PB 
at 0.2 Hz compared to spontaneous breathing and to PB at 
0.3 Hz was due to a higher storage component using D1 (Fig. 
4a, SH), and to a higher transfer component using D2 (Fig. 
4b, CR→H). These different behaviors somewhat reflect what 
is observed in the simulation of Fig. 2c. The higher PE 
observed at 0.2 Hz is in line with previous findings reporting 
that RSA tends to be stronger during slow breathing [12]. 
Our results suggest that the enhanced RSA can be interpreted 
in terms of cardiorespiratory interactions only when the 
information transfer is assessed by the CE, while no changes 
are observed using TE. In the latter case, it is likely that 
cardiorespiratory interactions are incorporated, at least in 
part, in the SE and thus ascribed to information storage. 

V. CONCLUSIONS 

The aim of this study was to compare the measures of 
information storage and transfer resulting from the two 
possible entropy decompositions that can be applied to the 
predictive information about the target of a bivariate 
dynamical system. Our simulations showed that both 
decompositions have advantages and drawbacks, but – for 
the case of unidirectional interactions from source to target – 
the decomposition based on CE and cSE should be preferred. 
In this case, the more classic decomposition based on TE and 
SE is exposed to common driver effects determining changes 
in the SE (see, e.g., Figs. 1c and 2a,c) which are ascribed to 
information storage phenomena although they are not related 
to the internal dynamics of the target system. 

The analysis of real RV and HRV time series suggested 
that the CE is more appropriate than the TE to quantify 
cardiorespiratory interactions, confirming the suitability of 
CE  and  cSE for  decomposing  the  predictive  information  

 

Figure 4.   Entropy decomposition of HRV and RV for the PB protocol. 

The PE of the HRV series, PH, computed during spontaneous (SP) and 

paced breathing at 0.2 Hz, 0.25 Hz and 0.3 Hz, is decomposed through D1 

(a) or through D2 (b). * p<0.05, Kruskall Wallis ANOVA and post-hoc 

pairwise test with Tukey’s honestly significant difference correction for 

multiple comparisons. 

about HRV in cardiorespiratory analyses in which 
interactions are most likely unidirectional from RV to HRV. 
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