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Abstract— With the advances in neuroimaging technology, it
is now possible to measure human brain activity with increasing
temporal and spatial resolution. This vast amount of spatio-
temporal data requires the development of computational meth-
ods capable of building an integrated picture of the functional
networks for a better understanding of the healthy and diseased
brain [1]. Although the construction of these networks from
neuroimaging data is well-established [2], current approaches
are limited to the characterization of the global topology of
static networks where the links between different brain regions
represent average connectivity over a long time period [3],
[2]. Recent studies suggest that human cognition arises from
the rapid formation and dissociation of synchronized neural
activity on short time scales in the order of milliseconds [4].
There is a strong need for new electroencephalogram (EEG)-
based analytic frameworks for monitoring dynamic functional
network activity. In this paper, we propose a graph theoretic
approach for tracking the changing topology of functional
connectivity networks across time. First, we introduce an event
detection algorithm based on node level feature extraction and
principal components analysis of time-dependent node correla-
tion matrices. Then, we propose a k-means based clustering
approach to characterize each time interval with the most
common connectivity states. Finally, the proposed methodology
is applied to the study of the dynamics of functional connectivity
networks during error-related negativity (ERN).

I. INTRODUCTION

With the advance in noninvasive imaging modalities, there
is growing evidence that human cognition arises from the
integration of neural activity from functionally distinct neu-
rocognitive networks, known as functional connectivity (FC).
Most of the current work is based on the assumption that
functional connectivity is stationary both temporally and
spatially. However, empirical evidence along with experi-
mental neuroimaging studies have recently revealed that the
functional connectivity fluctuates across time across multiple
scales [5].

Recently, a few studies focused on the evolution of
connectivity patterns and network metrics estimated from
multichannel neurophysiological recordings [6], [7], [8]. The
early papers in this area use a moving time-window to con-
struct time-varying functional connectivity graphs (FCGs)
from multichannel neurophysiological recordings [6], [7],
and employ topographical graph measures to summarize
the evolution of these networks across time and within a
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frequency band. However, these methods have a couple of
drawbacks. By computing a topological measure for each
FCG, these methods cannot capture the spatial variations
and thus are unable to determine the network components
that contribute to the change in organization. The more
recent research in the area of time-varying FCGs attempts
to address these issues by developing a framework for
extracting functional connectivity microstates (FCµstates)
or network states defined as short lasting quasi-stationary
connectivity patterns [5], [8]. In [5], temporally invariant
network states were defined by first representing each FCG
as a vector, constructing a similarity matrix in time between
all FCGs, and clustering to identify the temporal boundaries
of each network state. Series of temporally adjacent networks
assigned to the same cluster comprised a coherent network
state summarized by the average of FCGs in that time
interval.

In this paper, we contribute to this line of work and offer
some improvements. First, unlike current work which mostly
relies on the raw functional connectivity graphs at each time
point, we offer a feature based similarity approach to track
the network dynamics in time. Well-known graph theoretic
measures for weighted graphs are used to extract node
level features at each time point. Next, correlation matrices
across sliding time windows are constructed to quantify the
similarity between the different nodes in the network. The
principal eigenvector of these correlation matrices are then
used to detect the transition points between different network
states. This approach offers a way of directly correlating the
nodes and identifying change points based on changes in
the nodes’ attributes. Once these transition points are identi-
fied, a collection of representative network topographies are
extracted for each interval across multiple subjects through
k-means clustering, unlike current methods which usually
consider the average connectivity to summarize network
states. Finally, the proposed framework is applied to the
study of error related negativity in the brain across multiple
subjects.

II. BACKGROUND

In this section, we will review the basics of functional
connectivity measures, in particular the time-varying phase
synchrony measure, and some common graph theoretic mea-
sures for weighted graphs.

A. Time-Varying Functional Networks

The time-varying functional brain networks are gener-
ated where the nodes of the graphs correspond to different
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brain regions and the edges correspond to the connectivity
strengths. In this paper, we quantify the connectivity using
a recent phase synchrony measure based on RID-Rihaczek
distribution [9]. This measure has been shown to be more
robust to noise and to provide better resolution as discussed
in [9].

First, we quantify the time-varying phase of a signal,
Φi(t, ω) = arg

[
Ci(t,ω)
|Ci(t,ω)|

]
where Ci(t, ω) is the complex

RID-Rihaczek distribution1:

Ci(t, ω) =

∫ ∫
exp

(
−
(θτ)2

σ

)
︸ ︷︷ ︸

Choi-Williams kernel

exp(j
θτ

2
)︸ ︷︷ ︸

Rihaczek kernel

Ai(θ, τ)e
−j(θt+τω)dτdθ

(1)

and Ai(θ, τ) =
∫
si(u+ τ

2 )s∗i (u− τ
2 )ejθudu is the ambiguity

function of si. The phase synchrony between nodes i and j
at time t and frequency ω is computed using ‘Phase Locking
Value’ (PLV):

PLVi,j(t, ω) =
1

L

∣∣∣∣∣
L∑
k=1

exp
(
jΦki,j(t, ω)

)∣∣∣∣∣ (2)

where L is the number of trials and Φki,j(t, ω) = |Φi(t, ω)−
Φj(t, ω)| is the phase difference estimate between the two
nodes for the kth trial.

Let {G(t)}t=1,2,...,T be a time sequence of graphs where
G(t) is an N × N weighted and undirected graph corre-
sponding to the functional connectivity network at time t for
a fixed frequency or frequency band, T is the total number
of time points and N is the number of nodes within the
network. The time-varying edge values are quantified by the
average PLV within a frequency band and at a certain time
as:

Gi,j(t) =
1

Ω

ωb∑
ω=ωa

PLVi,j(t, ω) (3)

where Gi,j(t) ∈ [0, 1] represents the connectivity strength
between the nodes i and j within the frequency band of
interest, [ωa, ωb], and Ω is the number of frequency bins in
that band.

B. Graph Theoretic Measures

Recent developments in the quantitative analysis of com-
plex networks, based largely on graph theory, have been
rapidly translated to studies of brain network organization
[2]. In this paper, we will apply graph theoretic topological
measures defined particularly for weighted networks to ex-
tract features from each node. In particular, we will focus
on the clustering coefficient, path length and centrality mea-
sures. For a node n, the weighted local clustering coefficient
Cn is defined as

Cn =
2twn

kn(kn − 1)
, (4)

1The details of the RID-Rihaczek distribution and the corresponding
synchrony measure are given in [9].

where twn is the weighted geometric mean of triangles around
node n and kn is the weighted degree of node n [3]. The
average shortest path length Ln of a node n is

Ln =
1

N

N∑
j=1

Dnj , (5)

where Djk is the shortest path distance, computed as the
sum of the edge weights, between nodes j and k. Lastly, the
eigenvector centrality En is computed by selecting the nth

element of the principal eigenvector e of a graph G such
that

En =
1

λ

N∑
j=1

Gnjej , (6)

where λ is a constant [3], [10].

III. METHODS

A. Event Interval Identification

Since the connectivity networks are fully connected, we
first identified significant edges of the networks using Di-
jkstra’s algorithm [11]. Let Gs(t) be the weighted graphs
produced by Dijkstra’s algorithm, where s = 1, 2, . . . , S,
t = 1, 2, . . . , T , S is the number of subjects, and T is the
number of time points. Node level features were extracted
from the weighted graphs composed of the significant edges.
For a given time point t and subject s, three features were
extracted from the N nodes of graph Gs(t) into a feature
vector fsi (t) ∈ RN×1, where i = 1, 2, 3. For a node n at
time t for subject s, fs1 (t)(n) = Cn, fs2 (t)(n) = Ln, and
fs3 (t)(n) = En. For each feature i, we constructed the tensor
X i ∈ RT×N×S , where X i(t, n, s) = fsi (t)(n).

Our goal was to capture the time-varying changes in the
networks across all subjects. We used Tucker decomposition
to compress each tensor along the subject mode. The full
Tucker decomposition [12] of X is

X = C ×1 U1 ×2 U2 ×3 U3 (7)

where C is a core tensor with the same dimensions as X ,
×k is the multiplication of a tensor with a matrix along
the kth mode, and Uk ∈ RI×I is a component matrix for
the kth-mode, where I is the size of X along mode k. The
Frobenius-norms of the subtensors Ck=j obtained by fixing
the kth dimension decrease in value as j is increased [13]
and are singular values of the tensor along the ith mode. An
elbow criterion was used to select the optimal number of
singular values. The original tensor was compressed along
the subject mode by projecting the tensor onto the corre-
sponding singular vectors. That is, for tensor X i ∈ Rt×n×s
corresponding to feature i, we have a matrix X̂i

X̂i =

M∑
m=1

wm X i ×3 U
m
3 (8)

where wm = ‖C3=m‖F∑S
s=1 ‖C3=s‖F

and Um
3 is the mth column of

U3.
In order to capture the variation in the node activity over

time, we computed correlation matrices over time using a
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sliding window. For each time window with length W and
feature i we calculated a correlation matrix Ci

jk

Ci
jk(t) = |ρ

(
X̂i([t−W+1, t], j), X̂i([t−W+1, t], k)

)
| (9)

where ρ is the correlation function and Ci
jk is the absolute

value of the correlation between the values of the feature i at
nodes j and k over the time window. Next, for a feature i, we
compared the principal eigenvector ui(t) of each correlation
matrix with the average of Ŵ past principal eigenvectors
vi(t) = 1

Ŵ

∑t−1
k=t−Ŵ ui(k).

Events of interest were identified by computing similarity
between the principal eigenvector ui(t) at the current time
point with typical behavior, i.e. vi(t), using a cosine similar-
ity measure. The angle between the two vectors is computed
as:

θi(t) = arccos

(
〈ui(t),vi(t)〉
‖ui(t)‖2‖vi(t)‖2

)
, (10)

where 〈·, ·〉 is the inner product operator.
The angles θi(t) indicate how the current time point t

differs from the previous Ŵ time points for a feature i. We
averaged the angles for the different features to compute a
z-score z(t) at each t

z(t) = 1− cos

(
1

3

3∑
i=1

θi(t)

)
. (11)

When the z-score of a time point t was larger than two
standard deviations from the mean of z(t), we detected that
time point as a change point.

B. Network State Characterization

Once the different time intervals were identified, for each
time interval [T1, T2] we cluster the collection of connec-
tivity matrices

{G1(T1), . . . ,G1(T2),G2(T1), . . .G2(T2),GS(T1), . . .GS(T2)}

using the k-means algorithm. The clustering was initiated
with random seed, the distance measure was the `2 norm,
and the clustering was replicated 250 times. The number of
clusters was chosen to maximize the Fisher score

F = tr{(Sb)(St + γI)−1} (12)

where Sb and St are the between-class scatter matrix and
total scatter matrix, respectively [14].

IV. RESULTS

A. EEG Data

The proposed framework is applied to a set of EEG data
containing the error-related negativity (ERN). The ERN is a
brain potential response that occurs following performance
errors in a speeded reaction time task usually 25-75 ms
after the response [15]. Previous work [16] indicates that
there is increased coordination between the lateral prefrontal
cortex (lPFC) and medial prefrontal cortex (mPFC) within
the theta frequency band (4-8 Hz) and ERN time window
(25- 75 ms), supporting the idea that frontal and central
electrodes are functionally integrated during error processing.

EEG data from 63-channels with a sampling rate of 128
Hz was collected in accordance with the 10/20 system
on a Neuroscan Synamps2 system (Neuroscan, Inc.). A
speeded-response flanker task was employed, and response-
locked averages were computed for each subject. All EEG
epochs were converted to current source density (CSD) using
published methods [17]. In this paper, we analyzed data from
91 subjects corresponding to the error responses.

B. Event Intervals
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Fig. 1. The Z-scores corresponding to the combination of the local clus-
tering coefficient, average shortest path length, and eigenvector centrality
measures, for a window length of 5 samples. The points in red denote
change points that are greater than two standard deviations from the mean
Z-score.

In our analysis, we first constructed time-varying graphs
with N = 63, T = 256, and S = 91 where the edge
values were the average PLV over the frequency band [2,7]
Hz. From each graph, we extracted three features and for
each feature formed the tensor X i ∈ R63×256×91. We chose
W = 5 corresponding to 39.0625 ms. The z-score was
computed by comparing the current principal vector with
the average of the past 5 principal vectors. The combined
z-score across time is shown in Fig. 1. Based on this
figure, we detected 6 change points. Two of the change
points, specifically the two near the 0.25 second mark,
are 2 samples apart, which is smaller than our window;
therefore, we decided to consolidate those points into one
change point. From this analysis, we determined six event in-
tervals: [−1000,−875.0), [−875.0,−54.7), [−54.7, 187.5),
[187.5, 789.1), [789.1, 859.4), and [859.4, 1000) ms. It is
important to note that [−54.7, 187.5) corresponds to the
ERN time window and [187.5, 789.1) corresponds to the P3e
interval.

C. Topographic Distribution of Network States

For each time interval, we clustered the connectivity
matrices into two clusters using k-means, where the number
of clusters was chosen to maximize the Fisher score. In order
to highlight the changes between the different time intervals,
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in Fig. 2 we plot the centroid representing the first time
interval and the differences between the following centroids
and this initial one.

In the pre-response interval shown in Fig. 2-a there is
no localized activity. Then, during the interval shown in
Fig. 2-b, more focal activity emerges that involves separable
connections within frontal and parietal-occipital regions. This
is consistent with ongoing stimulus processing in occipital
and parietal regions combined with prefrontal engagement
to guide responding. During the ERN interval in Fig. 2-c,
most broad activity is suppressed, particularly for frontal re-
gions, and only a narrow lateral-central connection frontally
appears to maintain a strong connection. Next, in Fig. 2-d,
the network suppression begins to lessen and frontal and
parietal connections begin to reemerge. Finally, in Fig. 2-e,
suppression appears to be over, and broad frontal and parietal
connectivity returns.
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Fig. 2. (a) Topographical map of the top 5% of the significant connections
in the centroid with the highest membership for the first time interval. (b)-
(f) The top 2.5% largest magnitudes of both the positive (red) and negative
(blue) differences between the centroids for the given time interval and the
first time interval.

V. CONCLUSIONS

In this paper, we introduced a graph theoretic approach to
identify event intervals and characterize network states for
dynamic functional connectivity networks. We characterized

the connectivity graphs in terms of their node features and
use a Tucker decomposition to capture subject variation in
the node-feature space. Change-points are detected by com-
paring the principal eigenvectors of current time points with
recent past time points. Network states are then determined
by clustering the connectivity matrices. The centroids of the
resulting clusters indicate the network states for each interval
and differences in the centroids highlight changes between
different time intervals. Future work will concentrate on how
to better distinguish the background or default mode network
of the brain from the network connections that are simply
due to the response and cognitive processes.
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