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Abstract— In recent years, the human brain has been charac-
terized as a complex network composed of segregated modules
linked by short path lengths. In order to understand the
organization of the network, it is important to determine these
modules underlying the functional brain networks. However,
the study of these modules is confounded by the fact that
most neurophysiological studies consist of data collected from
multiple subjects. Typically, this problem is addressed by either
averaging the data across subjects which omits the variability
across subjects or using consensus clustering methods which
treats all subjects equally irrespective of outliers in the data. In
this paper, we adapt a recently introduced co-regularized multi-
view spectral clustering approach to address these problems.
The proposed framework is applied to EEG data collected
during a study of error-related negativity (ERN) to better un-
derstand the functional networks involved in cognitive control
and to compare between the network structure between error
and correct responses.

I. INTRODUCTION
Functional connectivity is defined as the statistical depen-

dency between spatially remote neurophysiological events
and is the key to understanding how the coordinated and
integrated activity of the human brain takes place. Syn-
chronization of neuronal oscillations has been suggested
as one plausible mechanism in the interaction of spatially
distributed neural populations and has been quantified using
phase synchrony measures.

Recently, research in the area of complex networks, in
particular graph theoretic measures, has been used to charac-
terize the relationship between the topology and the function
of the brain [1]. The bivariate relationships between neu-
ronal populations are represented as graphs where the nodes
correspond to the individual sites and the edges correspond
to the strength of the interaction quantified by functional
connectivity measures.

One important property of complex networks is modular
structure. A module is composed of a densely connected
set of nodes with sparse connections between modules in
the network. It is hypothesized that the modular structure
of complex biological networks is indicative of robustness
[2] and contributes to functionality by compartmentalizing
specific functions within certain cortical regions.

Identification of functional modules or communities in the
brain has been originally addressed using multivariate data
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analysis approaches such as Principle Component Analysis
(PCA) and Independent Component Analysis (ICA) which
put non-physiological constraints in the obtained components
such as orthogonality and independence. Recently, methods
from spectral analysis of graphs [3], unsupervised learning
algorithms such as k-means, have been used for graph
clustering by mapping the functional connections to a multi-
dimensional subspace defined by a set of eigenvectors. A
key challenge in identifying modular organization of brain
networks is determining a common structure across multi-
ple subjects. Current work either focuses on obtaining the
community structure for the average connectivity network or
on analyzing each subject individually and obtaining a com-
mon modular structure using a consensus clustering method.
Averaging neglects the variance across subjects. Consensus
clustering, on the other hand, combines individual clusterings
into a single map weighing each clustering equally and does
not allow for iterative refinement of the cluster structure.
Recently, clustering methods which exploit information from
multiple views of the data have been proposed in machine
learning and signal processing literature. These approaches
show that a spectral clustering framework which generates
clusters that are consistent across different views of the same
data produce clusters that are more accurate than the ones
obtained through the individual views or through averaging
[4].

In this paper, we adapt this multiview clustering approach
to develop a framework for identifying functional connec-
tivity modules across subjects. First, we introduce a graph
similarity metric to assign weights to different subjects.
Then, we introduce an iterative algorithm for determin-
ing the best cluster structure across subjects using a co-
regularization framework. Finally, we present the application
of this framework to both simulated networks and real data
obtained from a study of error-related negativity (ERN) from
electroencephalogram (EEG) data.

II. BACKGROUND

A. Time-Varying Phase Synchrony Measure

In this paper, we quantify the connectivity between brain
regions using a recent phase synchrony measure based on
RID-Rihaczek distribution [5], which has been shown to
be more robust to noise and to provide better resolution as
discussed in [5].

First, we quantify the time varying phase of a signal as:
Φi(t, ω) = arg

[
Ci(t,ω)
|Ci(t,ω)|

]
where Ci(t, ω) is the complex
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RID-Rihaczek distribution 1:

Ci(t, ω) =

∫ ∫
exp

(
−
(θτ)2

σ

)
︸ ︷︷ ︸

Choi-Williams kernel

exp(j
θτ

2
)︸ ︷︷ ︸

Rihaczek kernel

Ai(θ, τ)e
−j(θt+τω)dτdθ

(1)

and Ai(θ, τ) =
∫
si(u+ τ

2 )s∗i (u− τ
2 )ejθudu is the ambiguity

function of si. The phase synchrony between nodes i and j
at time t and frequency ω is computed using ‘Phase Locking
Value’ (PLV):

PLVi,j(t, ω) =
1

L

∣∣∣∣∣
L∑
k=1

exp
(
jΦk1,2(t, ω)

)∣∣∣∣∣ (2)

where L is the number of trials and Φki,j(t, ω) = |Φi(t, ω)−
Φj(t, ω)| is the phase difference estimate between the two
nodes for the kth trial.

From this measure, we can construct a time sequence of
graphs {G(t)}t=1,2,...,T where G(t) is an N ×N weighted
and undirected graph corresponding to the functional connec-
tivity network at time t for a fixed frequency or frequency
band, T is the total number of time points and N is the
number of nodes within the network. The time-varying edge
values are quantified by the average PLV within a frequency
band and at a certain time as:

Gi,j(t) =
1

Ω

ωb∑
ω=ωa

PLVi,j(t, ω) (3)

where Gi,j(t) ∈ [0, 1] represents the connectivity strength
between the nodes i and j within the frequency band of
interest, [ωa, ωb], and Ω is the number of frequency bins in
that band.

We can extend this representation across multiple subjects
with {Gs(t)} as the time varying graph for the sth subject
and use the tensor X ∈ RN×N×T×S to describe the time
varying functional connectivity networks across all subjects.

B. Spectral Clustering

The goal of graph clustering or partitioning is to detect the
community structure in the graph by maximizing the within
cluster connectivity strength while minimizing the between
cluster connectivity. Since linear clustering algorithms like
K-means are not capable of handling non-linear data, non-
linear algorithms such as kernel K-means and spectral clus-
tering algorithms have been preferred [3], [6].

Let W ∈ RN×N be the adjacency matrix for a weighted
and undirected graph with N nodes, standard spectral clus-
tering solves the following relaxed minimization problem:

min
U∈RN×k

tr(U>LU) subject to U>U = I, (4)

where L is the normalized Laplacian defined as L = I −
D−1/2WD−1/2 and D is the degree matrix. The solution
to this optimization problem is to choose U such that its

1The details of the RID-Rihaczek distribution and the corresponding
synchrony measure are given in [5].

columns are the k eigenvectors corresponding to the smallest
k eigenvalues of L. Applying k-means to the eigenvector
matrix (U) provides the cluster structure for the graph W.

C. Modularity
Modularity is a commonly used metric to quantify

the quality of the partitioning [7]. For a weighted
undirected graph, modularity is defined as: Q =
1

2m

∑
ij

(
Wij − didj

2m

)
δ(i, j), where di is the degree of the

ithnode, m is the sum of the edge weights in the graph
(m = 1

2

∑
ij Wij) and δ(i, j) = 1 if nodes i and j are in

the same cluster.

III. METHODS

A. Tensor-Tensor Projection
In this paper, we are interested in summarizing the com-

mon cluster structure across all subjects for a given time in-
terval of interest. For a given subject S0, connectivity across
time can be represented as a 3-way tensor XS0

∈ RN×N×T0 .
We first summarize the information across time using the full
Tucker decomposition [8] as XS0 = CS0×1 V

(1)
S0
×2 V

(2)
S0
×3

V
(3)
S0

+ ES0
where CS0

∈ RN×N×T0 is the core tensor, and
V

(1)
S0
∈ RN×N , V

(2)
S0
∈ RN×N , V

(3)
S0
∈ RT0×T0 are the

unitary projection matrices, ES0 ∈ RN×N×T is the residual
error, and ×k is the product of a tensor and a matrix along
mode-k.

In order to summarize the time information, the 3-way
tensor XS0

is projected to the singular vector v
(3)
l corre-

sponding to the lth largest singular value of the time mode,
X̂S0

= XS0
×3 v

(3)
l . The value of l is usually equal to 1 but

may change depending on the data.

B. Multiple Subject Clustering
Once the time compressed connectivity graphs are con-

structed for each subject, the goal is to identify the common
modular structure across subjects. To achieve this goal, we
adapted centroid-based co-regularization approach for multi-
view data clustering to multiple graph clustering [4].

In centroid based co-regularization approach, it is de-
sired to extract the common clustering structure obtained
from the centroid eigenvector matrix Uπ by minimizing
the disagreement between the eigenvectors of the individual
graphs, i.e. subjects, while still minimizing the cost function
of spectral clustering, i.e. tr(U>i LUi), for each graph. Let
{W1, ...,WS} be a set of connectivity matrices for the S
subjects and {U1, ...,US} be the corresponding eigenvector
matrices in RN×k which minimize the optimization problem
in equation (4). Clustering disagreement between each Ui

and the centroid Uπ is measured as the difference between
the normalized similarity matrices of the eigenvectors

D(Ui,Uπ) =

∥∥∥∥ UiU
>
i

‖ UiU>i ‖2F
− UπU>π
‖ UπU>π ‖2F

∥∥∥∥2
F

, (5)

where ‖ ◦ ‖F is the Frobenius norm. Reducing the disagree-
ment between Ui and Uπ in equation 5 is similar to finding
Uπ which maximizes tr(UiU

>
i UπU>π ).
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If we combine the objective of spectral clustering given
in equation 4 while minimizing the disagreement terms, we
obtain the following joint optimization problem.

min
U1,...,Un,Uπ∈RN×k

S∑
i=1

tr(U>i LiUi)−
S∑
i=1

λitr(UiU
>
i UπU>π )

(6)
where λi’s are the weights of each regularization term and∑S
i=1 λi = 1.
After initializing Uπ as the average of Ui’s , the problem

can be solved iteratively by applying the following two steps.
1) Fix Uπ and solve the following optimization problem:

min
U1,...,Un∈RN×k

S∑
i=1

tr(U>i (Li − λiUπU>π )Ui). (7)

Determining each Ui is equivalent to finding the k
eigenvectors corresponding to the smallest k eigenval-
ues of the modified Laplacian L̂i = Li − λiUπU>π .

2) Fix Ui’s and solve the following optimization problem

max
Uπ∈RN×k

S∑
i=1

λitr(UiU
>
i UπU>π ). (8)

By using the circular property of the trace
function, equation (8) can be represented as
maxUπ∈RN×k tr(U>π (

∑S
i=1 λiUiU

>
i )Uπ), which is

equivalent to finding the k eigenvectors corresponding
to the largest k eigenvalues of

∑n
i=1 λiUiU

>
i .

After Uπ converges, applying k-means on Uπ will yield
the common clustering structure.

C. Choice of the Regularization Parameters

The regularization parameters λi’s penalize the spectral
clustering objective by considering the cluster disagreements
between each Ui and Uπ . In this paper, we use the cosine
similarity between the connectivity graphs of pairs of sub-
jects to determine λi’s. The cosine similarity is computed
as: Φij =

〈Li,Lj〉
‖Li‖2‖Lj‖2 ; i, j = 1, 2, ..., S, where Li is the

normalized Laplacian matrix of the ith subject and 〈◦, ◦〉 is
the inner product. λi is then defined as the normalized total
similarity of the subject with all other subjects: λi = ψ(i)

‖ψ‖2
, where ψ(i) =

∑N
j=1 Φij . This parameter indicates how

much the subject’s connectivity network is consistent with
other subjects.

IV. RESULTS

A. Simulated Data

Performance of the co-regularized spectral clustering al-
gorithm was first evaluated on three sets of simulations and
was compared to the performance of the spectral clustering
algorithm applied to the average of the input graphs. In a
real data set, it is very common to have outliers that may
affect the performance of the whole analysis. For this reason,
we consider a collection of 10 networks where a subgroup
of the networks are outliers. Weighted, undirected and fully

connected graphs with 64 nodes were created and target
graphs were constructed with 3 modules consisting of 16,
32 and 16 nodes respectively. Intra-cluster edge values were
selected from a truncated Gaussian distribution in the range
of [0, 1] with µintra = 0.6 and σintra = 0.1 while the inter-
cluster edge values were taken from the same distribution
with µinter = 0.3 and σinter = 0.2. On the other hand,
the outlier graphs were constructed with two equal size
modules. Intra-cluster edge values were selected from a
truncated Gaussian distribution in the range of [0, 1] with
µintra = 0.8 and σintra = 0.1 while the inter-cluster edge
weights were selected from a truncated Gaussian distribution
with µinter = 0.1 and σinter = 0.2.

The performance of the original spectral clustering ap-
plied to the average graph and the co-regularized spectral
clustering algorithm were quantified by the average adjusted
mutual information (AMI) score [9] over 100 simulations.
Set of 10 graphs which consist of both the target and
outlier graphs were partitioned into k = 2, 3.., 10 clusters
and the k which maximizes the average modularity metric
was selected. Table-I shows the results of three different
simulations without any outliers, with 1 and 2 outliers. In
all cases, regularization parameters were selected to be equal.
As seen in Table-I, both algorithms were able to discover the
true partition when there were no outliers. However, when
outliers exist, applying spectral clustering to the average
of the graphs is less robust than the proposed multi-graph
clustering approach indicated by the lower AMI scores.

B. EEG Data

The proposed framework is applied to a set of EEG data
containing the error-related negativity (ERN). The ERN is a
brain potential response that occurs following performance
errors in a speeded reaction time task usually 25-75 ms
after the response [10]. Previous work [11] indicates that
there is increased coordination between the lateral prefrontal
cortex (lPFC) and medial prefrontal cortex (mPFC) within
the theta frequency band (4-8 Hz) and ERN time window.
EEG data from 63-channels was collected in accordance
with the 10/20 system on a Neuroscan Synamps2 system
(Neuroscan, Inc.) sampled at 128 Hz from 91 subjects. A
speeded-response flanker task was employed, and response-
locked averages were computed for each subject. All EEG
epochs were converted to current source density (CSD)
using published methods [12]. In this paper, we constructed
tensors corresponding to time-varying graphs in the theta
band and the time interval corresponding to 25-125 ms after

TABLE I
CLUSTERING PERFORMANCE OF CO-REGULARIZED SPECTRAL

CLUSTERING ALGORITHM AND THE AVERAGING METHOD ON

SIMULATED NETWORKS

AMI scores of Simulations (mean ± std)
Method 0/10 outlier 1/10 outlier 2/10 outliers

Co-Reg SC 1± 0 1± 0 1± 0
SC on Average 1± 0 0.9729± 0.0923 0.8288± 0.1235
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the response for each subject for both correct (CRN) and
error (ERN) responses.

C. Module Identification for ERN and CRN

First, Tucker decomposition was applied to tensors X ∈
R63×63×14×91 obtained for both response types. The time
interval corresponding to 25-125 ms after the response with
14 samples was projected to obtain connectivity matrices
for each subject. Then, the proposed clustering approach
was used to identify cluster structure of the brain during
the error and correct responses. Co-regularization parameters
were specified as described in section III-C (Fig. 1) and the
optimal cluster number k was determined as 5 for the ERN
data and 4 for the CRN data based on the modularity metric.
The clusters for ERN (Fig. 2a) are more localized whereas
the clusters for CRN are more spread out. In particular, for
the ERN there is a separation between the right and left lPFC
and the mPFC as these regions are key in the processing of
an error response.

Average inter cluster edge values for each cluster pairs
were computed for each subject and response type and
the resulting distributions were compared using Wilcoxon
signed-rank test. For ERN, the synchronization between the
right frontal cluster and the central cluster has been found
to be significantly higher than all of the other connectivity
values of the right frontal cluster (p < 0.05). In addition, the
synchronization between the central and the frontal clusters
was higher than all the other connectivity values during the
correct response (p < 0.05).

V. CONCLUSIONS
In this paper, we have introduced a new framework for

finding the common cluster structure of functional brain
connectivity graphs across multiple subjects. Unlike previ-
ous work in the area which either considers the clustering
structure of the average connectivity network or voting based
consensus clustering, the proposed framework adapts co-
regularized multi-view spectral clustering approach [4] for
finding a common cluster structure across subjects such that
the dissimilarity between the clustering structures for individ-
ual subjects is minimized while the separability between the
different clusters is maximized. Moreover, in the proposed
framework we introduced a way of assigning weights to
different subjects such that the subjects that are the least
similar to the group are deemphasized. The robustness and
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Fig. 1. Co-regularization parameters for ERN networks (A) and CRN
networks (B)
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Fig. 2. (a) Clusters for ERN data obtained by Centroid-Based Co-
regularization Algorithm, k = 5 (b) Clusters for CRN data obtained by
Centroid-Based Co-regularization Algorithm, k = 4

accuracy of the proposed framework is illustrated through
simulated networks. Finally, the proposed approach is ap-
plied to functional connectivity networks constructed from
multichannel EEG data where the connectivity is quantified
through phase synchrony. The resulting clusters for ERN and
CRN illustrate that there is increased specialization of brain
regions for the error response especially in the right and left
lPFC and mPFC.

Future work will consider extensions to the current ap-
proach in terms of choosing different similarity measures in
the cost function and different approaches to choosing the
regularization parameters. The application of this clustering
approach to dynamic connectivity networks will also be
considered.
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