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Abstract—In wireless body area sensor networking 

(WBASN) applications such as gastrointestinal (GI) tract 

monitoring using wireless video capsule endoscopy (WCE), the 

performance of out-of-body wireless link propagating through 

different body media (i.e. blood, fat, muscle and bone) is still 

under investigation.  Most of the localization algorithms are 

vulnerable to the variations of path-loss coefficient resulting in 

unreliable location estimation. In this paper, we propose a novel 

robust probabilistic Bayesian-based approach using received-

signal-strength (RSS) measurements that accounts for Rayleigh 

fading, variable path-loss exponent and uncertainty in location 

information received from the neighboring nodes and anchors. 

The results of this study showed that the localization root mean 

square error of our Bayesian-based method was 1.6 mm which 

was very close to the optimum Cramer-Rao lower bound 

(CRLB) and significantly smaller than that of other existing 

localization approaches (i.e. classical MDS (64.2mm), dwMDS 

(32.2mm), MLE (36.3mm) and POCS (2.3mm)). 

I. INTRODUCTION 

The lifetime chance of developing colorectal cancer (3
rd

 
most common cancer worldwide) is 1 in 20. More than 80% 
of colorectal cancers arise from polyps, making this cancer 
amenable to screening [1]. Early detection and screening of 
these polyps reduce the colorectal cancer deaths by 60%. 
This statistic indicates that effective advancements in 
endoscopy technology are extremely worthy of investigation. 
Recently, wireless capsule endoscopy (WCE), a disposable 
and ingestible wireless micro-robot that allows for direct and 
noninvasive visual examination of the inner lining of the GI 
tract has been developed. The capsule is equipped with 
miniature cameras on both ends and is about the size of a 
multi-vitamin pill, which can be swallowed easily. Sensor 
arrays are strategically placed on the patient’s chest and 
connected to a data recorder, worn on a belt around the 
waist. The patient swallows the capsule and it travels through 
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the GI tract by normal peristaltic waves, capturing images of 
the inner lining of the GI tract. As it continues down the GI 
tract, the images captured may identify potential 
abnormalities, such as obscure GI bleeding, suspected small 
intestinal tumors and surveillance in patients with polyposis 
syndromes and chronic diarrhea. During this procedure, the 
WCE captures images and the capsule is later excreted 
naturally.  

A number of technical challenges regarding size and cost, 
energy requirements, and wireless communication 
technology of WCEs are under investigation and in the heart 
of these investigations is the fundamental unsolved challenge 
of WCE navigation and localization. The knowledge of 
location and orientation of the capsule enables the physician 
to localize and assess the lesion, abnormalities or pathologies 
to recommend next steps in the patient’s treatment. Various 
challenges are raised by highly inhomogeneous human body 
medium that are profoundly different from the traditional 
indoor radio propagation challenges. Effects such as 
increased dampening, scattering, multipath and variable RF 
speed present to a much larger degree when the RF wave 
travels through different body media (e.g. bone, muscle, fat 
and blood) with varying dielectric properties. The problem 
gets even more challenging by the gastrointestinal 
movement, filling and emptying cycle, resulting in 
unpredictable ranging error. In addition, adhesions, bleeding, 
diseases and filling and emptying cycle alter GI tract motility 
causing a nonlinear time-variant motion in the GI tract 
especially between pylorus and ileocecal valve. Therefore, 
understanding of radio propagation inside human body is of 
great importance. 

Various technologies for localization of the WCE have 
been explored in feasibility studies; including ultrasound [2], 
magnetic tracking [3] and computer vision [4]. In [2], a 
method of tracking a WCE inside the GI tract based on the 
application of a microcontroller to control the generation and 
transmission of ultrasonic pulses was presented. In [3], a 
tracking system consisting of a magnetic marker, a sensor 
array, amplifiers, data acquisition devices and a signal 
processing unit was designed. In [4], a low-complex and 
efficient image compression method, based on integer-to-
integer 4x4 DCT transform was presented and 
experimentally verified. Among these technologies, RF 
signal based localization systems have the advantage of 
application-non-specific and relatively inexpensive hardware 
implementation. RF capsule localization systems usually use 
an external sensor array that measures the RF signal metrics 
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of capsule transmissions at multiple points and uses this 
information to estimate the distance or uses fingerprinting 
algorithms to estimate the location of the capsule. The RF 
localization technique based on time or angle measurement 
methods, i.e., Time of Arrival, Time Difference of Arrival 
and Angle of Arrival are not feasible. The strong absorption 
of human tissue causes large ranging errors and the limited 
bandwidth of the Medical Implant Communication Services 
(MICS) band make high resolution TOA estimation difficult. 

In this work, we consider the problem of source 
localization in inhomogeneous transmission media by 
constraint-based Bayesian inference approach using RSS 
profiling method that accounts for Rayleigh fading, variable 
path-loss exponent and uncertainty in location information 
received from the neighboring nodes and anchors. We derive 
a Bayesian-based localization approach to estimate the 
unknown location of a node in a network given the coarse 
information of RSS measurements and the position estimate 
of some neighboring nodes (anchors) with uncertain location 
information as expected from most real-world applications.  

The rest of the paper is organized as follows. In section 
II, problem statement, formulation and basic assumptions 
and the new developed constraint-based Bayesian inference 
localization method using RSS measurements are presented. 
Section III describes the simulation results, and the 
discussions and the conclusions of this study are presented in 
section IV.  

II. PROBLEM FORMULATION AND ALGORITHM 

DEVELOPMENT   

A. Signal Strength-based Measurement Model 

Assume a sensor network in 
3

 with m  anchors and n  

sensors. An anchor is defined as a node whose location 

  mkzyxa
T

aaak kkk
,,1,,,   is known with uncertainty 

defined by a probability density function (pdf) 

),,(
kkkk aaaa zyxf  and a sensor node is a node whose 

location   nizyxs
T

sssi iii
,,1,,,   needs to be estimated 

using a pdf function ),,(
iiii ssss zyxf . If an anchor at 

ka emits a signal of power TXP , the strength of the received 

signal P  at sensor location is  can be calculated in the log-

scale as the following: 

)log(10..)()(
0 ikikik

dnPPtsXdPdP 


 (1) 

where P , P  and 0P  denote the random variable RSS 

(dB), the mean value of RSS measurements at a given 
distance and the RSS measurements at a reference distance, 

respectively. ikd  is the distance between any two given 

nodes, X  is a random variable caused by shadowing and 

fading effects and n is the path-loss exponent. Due to the 
inhomogeneity of the transmission interface, we assume a 

Rayleigh distribution over X ~ (  ) rather than a Gaussian 

distribution or Rician distribution (fading). Additionally, due 

to the variations of the path-loss exponent throughout the 
inhomogeneous medium between any two given points in the 
network, we assume a Gamma distribution over n 

independent from X  with the scale and shape parameter   

and   respectively, n ~ ),( Gamma  [5]. 

Proposition 1: consider model (1) and let X and n be 

two independent random variables with Rayleigh distribution 

and Gamma distribution, respectively. The pdf of ijd  given a 

value P can be approximated as follows: 
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In model (3), )( zD  denotes the parabolic-cylinder 

function. For the proof of proposition 1, the reader is 
referred to the section Appendix. 

B. Bayesian-based localization method 

Assume that the sensor node i receives a beacon packet 
from an anchor. The updated location pdf of sensor i, 

),,(
iiii

sss

update

s
zyxf , can be estimated using Bayesian 

inference by intersecting the current location pdf of the 

sensor i, ),,(
iiii

ssss
zyxf , and RSS measurement pdf (2) 

between the sensors i and anchor k transmitting the beacon 
packet. 
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In (4), iV  denotes the network volume of possible 

locations of sensor i ranging from  min,min,min, ,,
iii sss zyx  to 

 max,max,max, ,,
iii sss zyx . Furthermore,   is the pdf 

constraint imposed on the location of sensor i given the RSS 
measurement pdf (2) and the location pdf of the transmitting 
node. 
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in which kV  denotes the network volume of possible 

locations of anchor k ranging from  min,min,min, ,,
kkk aaa zyx  

to  max,max,max, ,,
kkk aaa zyx . Coordinates  

iii sss zyx ,,  that 

maximizes ),,(
iiii

sss

update

s
zyxf  in (6) corresponds to the 

estimated locations of sensor i. 

  )),,((maxargˆ,ˆ,ˆ

,,
iiii

isisis

iii sss

update

s
zyx

sss zyxfzyx   (6) 

III. ALGORITHM IMPLEMENTATION AND SIMULATION 

RESULTS 

A. Simulation Results  

To evaluate the performance of the Bayesian-based 
localization algorithm, various examples featuring different 
values for sensor and anchor locations, anchor location 
uncertainty, number of anchors covering the sensor and the 
characteristics of the inhomogeneous transmission medium 
are provided. For simulation purposes, the mode parameter 
of the Rayleigh fading between the sensor and any anchor 
was set to 4.5 ( 5.4 cm

3
). In addition, the path-loss 

exponent of the inhomogeneous medium n was set to n ~ 

)1,4(Gamma . The pdf of the distance given P-P0 (dB) 

between the sensor and any anchor is presented in Fig. 1(a) 
and the mean and one time standard deviation of the 
simulated RSS (P-P0) at each distance are shown in Fig. 1(b) 

Example1. Assume a 2-D scenario in which the sensor s1 
is a stationary node located at [1.5 1 0] and 

5,,2,1),,,( kzyxf
kkkk aaaa  has Gaussian distribution 

with mean (cm) µa1=[2.5 3 0], µa2=[-0.5 -1 0], µa3=[0.5 2 0], 
µa4=[3.5 0 0] and µa5=[1 0 0] and standard deviation (cm) 
σa1=[0.3 0.3 0], σa2=[0.3 0.3 0], σa3=[0.3 0.3 0], σa4=[0.3 0.3 
0], σa5=[0.2 0.4 0] . Location estimation for the network 
topology using beacon packets from a set of 5 anchors (a1, 
a2, a3, a4, a5) after only one iteration in the x-y plane is 

presented in Fig. 2. Final position estimation of 
1̂

s is 

computed as the intersection of the pdf estimation of the 
location constraint imposed by anchors a1, a2, a3, a4 and 
a5.The uncertainty in the information of location of each 
anchor is presented by contours around the anchor. The 
center of the contour represents the estimated location of the 
node with the highest probability (after maximizing the index 
in Eq. (6)) and the radius of the outermost contour is 1-σ 
elliptical error bound. In this example, the true and the 

estimated location of s1 were [1.5 1 0] and 1ŝ  [1.42 0.94 0], 

respectively. As a result, the estimation error of 
approximately 0.10 in the x-y plain is small compared to the 
confidence bounds on the error. 

Example 2. Assume a 3-D scenario in which the sensor s1 
is a stationary node located at [-1 0 1] and 

5,,2,1),,,( kzyxf
kkkk aaaa  has Gaussian distribution 

with mean (cm) µa1=[1 1 1], µa2=[-2 -1 0], µa3=[-3 2 0], 
µa4=[0 -2 1] and µa5=[0 0 0.5] and standard deviation (cm) 
σa1=[0.3 0.3 0.3], σa2=[0.3 0.3 0], σa3=[0.3 0.3 0.3], σa4=[0.3 
0.3 0], σa5=[0.2 0.4 0.3] . Location estimation for the 

network topology using beacon packets from the set of 5 
anchors (a1, a2, a3, a4, a5) after only one iteration in the x-y-z 
space is carried out and the true and the estimated location of 

s1 were [-1 0 1] and 1ŝ  [-0.85 0.1 0.9], respectively. As a 

result, the estimation error of approximately 0.21 is small 
compared to the confidence bounds on the error 
(approximately 0.30). 
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Figure 1.  (a) The pdf of distance given P-P0 between the sensor and any 

anchor. (b) Mean and one time standard deviation of the simulated RSS (P-

P0) at each distance. 
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Figure 2.  Contours of the location estimation for the network topology 

using a set of 5 anchors. Sensor and the anchors and are marked by circle 

and rectangles, respectively. The contour around the sensor represents the 

constraint on the location of the sensor imposed by the anchors (Example 

1). 
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Figure 3.  Effect of number of anchors on localization accuracy 

 

The effect of number of anchors on the localization 
accuracy of the Bayesian-based approach is presented in Fig. 
3. In addition, the Cramer-Rao lower bound (CRLB) is 
evaluated, showing a close performance of the Bayesian-
based approach to the optimum (CRLB). We remark that the 
CRLB shown is calculated assuming full connectivity, and as 
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such provides only a loose lower bound on the best 
performance achievable by any unbiased estimator. 

B. Discussions and future works 

It can be observed from the uncertainty contours of the 
sensor and anchor locations in Fig. 2 that the uncertainty in 
the sensor location estimation was significantly smaller 
compared to that of anchors and the RSS measurements. In 
addition, the localization error obtained by the Bayesian-
based localization method using RSS measurements was 
larger when the sensor was outside the convex hull of the 
anchors compared to when the sensor laid inside the convex 
hull of the anchors. Furthermore, to deploy the RSS 
fingerprinting method in real terrains such as GI tract 

monitoring, some parameters of Eq. (2) such as P , P , 0P , 

 ,   and   corresponding to the human body medium 

should be estimated prior to the estimation of the probability 
model. 

The robustness analysis of the Bayesian inference 
methods study the sensitivity of the Bayesian answers to 
uncertain inputs (the model or likelihood and the prior 
distribution). In this study, the likelihood refers to the pdf 

constraint ),,,,,( Pzyxzyx
kkkiii aaasss  imposed on the 

location of a node given the RSS measurement pdf (2). 
Several studies have investigated the impact of different 
priors (informative vs. non-informative) on the performance 
robustness of the Bayesian inference-based methods ([6-7]) 
which suggest that informative priors significantly reduce the 
sensitivity of the Bayesian-based methods to outliers and 
model uncertainty in deriving posterior distributions. In this 
study, Gaussian distribution (informative) as a priori 

information of the anchors’ locations pdf ),,(
kkkk aaaa zyxf  

and nodes’ location pdf ),,( ssss zyxf  were selected 

resulting in a robust localization method to the variations of 
the model (likelihood) and the terrain characteristics.    

 The performance of the Bayesian-based method using 
RSS measurements in terms of root mean square localization 
error (RMSE) after running 1000 Monte Carlo simulation 
trials were evaluated (1.6mm) and compared to the generated 
RMSE of other localization approaches (e.g. the classical 
MDS (64.2mm) [8], MLE (32.2mm) [8], dwMDS (36.3mm) 
[9] and POCS (2.3mm) [10]) when a sensor node was 
covered by five anchors in a 3-D terrain. The RMSE of the 
location estimation obtained using the Bayesian-based 
method using RSS measurements were significantly smaller 
than those of other methods showing improvements in the 
location estimation. 

As part of the future work, we intend to measure 
dielectric properties of human body and specifically the GI 
tract to test the developed model and the performance of the 
developed Bayesian method in WCE navigation and 
localization.  

APPENDIX 

The pdf of )log( ijd  given P can be formulated as follows: 
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and (2) follows readily. 
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