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Abstract— This paper presents an algorithm for the ob-
jective assessment of the motion of a body during health-
evaluation physical tests using our inertial sensor, namely the
ActimedARM. With the orientation quaternions provided by
the sensor and integrating twice the calibrated acceleration
measurements, we are able to compute the displacement of the
sensor worn by a patient. To validate our data we have made
measurements with both our sensor and a reference optical
system. The displacement curves provided by our algorithm
were correlated to the gold-standard system with a mean rate
of 94.96%.

Index Terms— Actimetry monitoring, inertial sensors, sit-to-
stand test, quaternion, embedded systems.

I. INTRODUCTION

Physical exercises can help diagnosing diseases affecting
the overall health condition. For example, diseases such
as chronic obstructive pulmonary diseases (COPD) can be
efficiently diagnosed by the study of the physical activity of a
patient. Therefore, normalized activity estimation tests were
developed, such as the chair-rise test (CRT) that can help
estimates the evolution of post operation rehabilitation on a
patient or the physical condition of the elderly [1]. Nowa-
days, gold-standard systems can be used for the objective
study of these exercises.

Typical gold-standard systems for motion evaluation are
composed of sets of cameras. These kinds of systems can
give precise description of the patient motion by the means
of tags placed on the body or with the help of complex image
processing algorithms. But these tremendous performances
imply important and restrictive drawbacks such as the need
for high-performance computational systems and to wear
physical tags which is hardly acceptable in daily life.

Recent works and achievements in the MEMS indus-
try made possible the design of small integrated wearable
sensors for home health monitoring that are thereby more
acceptable for the patient. We used a sensor we developed,
the ActimedARM [2], to monitor activities (postures, transfer
and walk) and wanted to use it for the objective assessment
of the displacement during sit-to-stand tests.

The goal of our study is to provide an objective tool that
can be used by patients in their own environment for the
monitoring of their motion during physical exercises.
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II. MATERIALS AND METHOD

A. Material

The ActimedARM was used to measure the acceleration
of a body. This system is composed of a 32-bit ARM
microcontroller, a three-axis accelerometer, a three axis mag-
netometer, a SD card and a 802.15.4 wireless module. The
ActimedARM can measure the acceleration and the intensity
of the magnetic field along its three axis and detect events
(walking episodes, transfers, postures). It also performs a
low-pass filtering on the acceleration data to remove high-
frequency noise [2].

The ActimedARM can compute on-board the quaternion
equivalent to the orientation of the person wearing the system
using the acceleration of the gravity and the measurement of
the magnetic field. As to represent orientation, quaternions
are more interesting than Euler angles despite their relative
obfuscated representation because they are smaller —and
thereby more easily embedded— and also because they do
not present singularities unlike Euler angles [3].

Fig. 1. The wearable actimeter used for experimentations: ActimedARM
(center), battery (left) and SDCard (right).

The sensor can be used in both data-logging and data-
pushing modes. In the first mode, the 802.15.4 module
(XBee) can stream the measured data to an host computer
running a python software able to show real-time person
orientation and display events on screen. In this mode, the au-
tonomy is 24 days (resp. 8 days) on 3600 mAh battery (resp.
1200 mAh) [2]. When used as a data-logger, the embedded
communication module is turned off to increase battery life
allowing autonomy greater than 32 days (3600mAh). The
data are then written on the memory card for offline analysis
[2].

B. Implementation

1) Overall description of the algorithm: The algorithm
is divided into two individual parts, the correction of the
orientation error and the computation of displacement and
velocity from the acceleration:
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1. Correction of the placement orientation
2. Velocity computation process

– High-pass filter
– Integration

3. Displacement computation process
– Integration
– High-pass filter

The first step is dedicated to the correction of the differ-
ence between the referential of the body, measured by the
sensor, and the terrestrial reference frame.

The second and third steps produce the displacement
values from the corrected acceleration measurements. The
numerical high-pass filters are used to overcome the need for
initial conditions during the entire integration process [4].
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Fig. 2. Global schematic of the algorithm where a(t) is the raw acceleration
input signal and xf (t) is the output processed position signal.

2) Orientation error corrections using quaternion: As
it is placed manually onto the patient’s body, the sensor
is poorly aligned with common reference, resulting in a
constant orientation error. This orientation offset error can
be seen as a rotation between the sensor and the terrestrial
reference frame. The orientation is available and given under
the form of a quaternion by the sensor at each time. Knowing
this, it is thus possible to project the signals in the initial
referential by applying the inverse transform.

The idea behind this recalibration is to re-project the
acceleration signals along the three axis of the terrestrial
reference. This operation is mathematically defined by the
following relationship for a given acceleration sample an, in
the reference frame 〈i, j, k〉 of the sensor, a transformation
operator Lq and the output sample a′n, in the terrestrial
reference frame 〈i′, j′, k′〉:

a′n = Lq · an = q · an · q−1 (1)

The Hamilton product, which defines the multiplication
between two quaternions, is not commutative and defined by
(7). Coordinate changes and relationship between rotations
and quaternions are also discussed in Appendix.

The input and output samples are written under the form
of a pure quaternion (i.e. with null real part):

an =

 0
ai
aj
ak

 a′n =

 0
ai′
aj′
ak′

 (2)

The quaternion q is the unit quaternion (a versor) holding
the rotation to be applied —the inverse of the orienta-
tion measured— and q−1 is its inverse quaternion. This
quaternion must be carefully chosen in order to accurately
recalibrate the data.

Depending on the context of the analysis (real-time vs.
offline), there are two ways of finding the most accurate
quaternion. During a posteriori analysis, a good strategy is
to detect an initial standing position as a referential and to
compute the quaternion. For real-time embedded perspective,
on-line detection of standing posture can be developed with
further manual or automatic calibration routines.

3) Numerical integration: Numerical integration of sig-
nals is central in our algorithm so we had to investigate and
compare several numerical methods:

• Rectangle rule:

y[n] =
1

fs

n∑
k=0

x[n− k] = y[n− 1] +
1

fs
x[n]

• Trapezoidal rule:

y[n] = y[n− 1] +
1

2fs
(x[n− 1] + x[n])

• Simpson’s rule:

y[n] = y[n− 1] +
1

fs
·
x[n− 1] + 4.x[n] + x[n+ 1]

6

Where x[n] (resp. y[n]) represent the n-th input (resp.
output) sample and fs is the sampling frequency.

We have chosen to use the trapezoidal rule because it is
the best algorithm in terms of performance and computation
weight. While the rectangle rule is the easiest to implement,
it is the less accurate. The Simpson algorithm, in comparison
with the trapezoidal rule is not more precise and generates
a computational overhead [4][5].

4) Filters characteristics: Two types of numerical filters
were considered, the first one being an Infinite Impulse-
Response (IIR) filter and the other, a Finite Impulse-response
(FIR) filter. We have chosen to process our data using FIR
filters because its phase response is linear. However, they
have higher order than IIR for a given cut-off frequency
implying longer transient in the result signal.

C. Experiments

In order to evaluate the accuracy of the algorithm, experi-
ments were conducted with an ActimedARM (sampling fre-
quency: 25Hz) and a gold-standard video system composed
of 7 Eagle-type cameras (resolution: 1.3M pixels, sampling
frequency: 200Hz) from Motion Analysis Inc. (Santa Rosa,
CA USA). A total of 13 tags were placed on the body of the
subjects for the evaluation of the motion by the cameras. One
actimedARM was placed near the navel, with a tag placed
on it and another on the pelvis, as shown in Fig. 3.

The experimental protocol involved 4 male subjects (36±
11.5yrs, 87.7± 32.57kg,1.73± 0.10m), performing different
tasks of a normal activity (e.g. standing up, sitting down
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Fig. 3. Placement of one ActimedARM and its tag, near the pelvis.

and walking). We were comparing the positions given by the
video system to the one computed by our inertial sensors.
For the sake of simplification, we present here only the
results in sit-to-stand, because the z axis is less sensitive
to misorientations.

The scenario precisely consisted in a vertical jump, ten
seconds before the start of the record in order to synchronize
the signals, followed by 9 sit-to-stands sequences. Two
signals were extracted from the video for each experiment:
one representing the displacements along the vertical axis of
the tag placed on the sensor and another one placed on the
navel. The filter used during processing was a high-order FIR
filters with a very low cut-off frequency which was adapted
to the experimental conditions.

D. Results

With regards to the results we obtained, we found that the
sensor placed on the navel was relatively accurate. In Fig.
4 are shown two position signals extracted from the set of
cameras (one tag on the pelvis and the other near navel), the
raw data from the ActimedARM located on the pelvis and
the processed data from this same sensor.

Fig. 4. Experiment #1 — Signals along vertical axis collected during a serie
of Sit-to-Stand and Back-To-sit, raw signal extracted from the ActimedARM
(dashed), corrected signal (red) and signals extracted from video systems
(blue, green)

The gain in terms of accuracy can be appreciated on
this figure when comparing the uncorrected position signal
from the ActimedARM (Sensor (raw)) and the quaternion-
corrected signal (Sensor (cal.)). This improvement is also
supported by the correlation matrices shown in Table 1, 2
and 3. The correlation coefficients between the uncorrected

signal from experiment #1 (resp. #2 and #3) and the video
systems are respectively 0.5391 (−0.2803 and −0.8497) and
0.5908 (−0.1949 and −0.7981).

When correlating video systems with the calibrated data,
these coefficients are 0.9355 (0.9580 and 0.9553) and 0.9446
(0.9038 and 0.9067) denoting a significant improvement in
the correlation of our signals to the video-based data.

TABLE I
CORRELATION MATRIX (EXPERIMENT #1)

Sensor (raw) Sensor (cal.) Video1 Video2
Sensor (raw) 1.0 0.7034 0.5391 0.5908

Sensor (cal.) 0.7034 1.0 0.9355 0.9446

Video1 0.5391 0.9355 1.0 0.9950

Video2 0.5908 0.9446 0.9950 1.0

Gender: Male, Age: 31, Height: 1m85 , Weight: 125kg

TABLE II
CORRELATION MATRIX (EXPERIMENT #2)

Sensor (raw) Sensor (cal.) Video1 Video2
Sensor (raw) 1.0 −0.4347 −0.2803 −0.1949
Sensor (cal.) −0.4347 1.0 0.9580 0.9038

Video1 −0.2803 0.9580 1.0 0.9603

Video2 −0.1949 0.9038 0.9603 1.0

Gender: Male, Age: 54, Height: 1m70 , Weight: 65kg

TABLE III
CORRELATION MATRIX (EXPERIMENT #3)

Sensor (raw) Sensor (cal.) Video1 Video2
Sensor (raw) 1.0 −0.8306 −0.8497 −0.7981
Sensor (cal.) −0.8306 1.0 0.9553 0.9067

Video1 −0.8497 0.9553 1.0 0.9440

Video2 −0.7981 0.9067 0.9440 1.0

Gender: Male, Age: 23, Height: 1m65 , Weight: 73kg

Unfortunately, the displacement data extracted from the
video were corrupted for the fourth subject, we therefore
could not oppose them to the signals from the ActimedARM.

III. CONCLUSIONS
This paper shows that first assessments of the vertical

motion of a patient during sit-to-stand exercises is feasible
with wearable sensors, despite errors of integration and needs
for regular recalibrations. This makes our sensor, with its
integrated algorithm, an interesting tool for home-monitoring
of the activity.

Future work will be focused on the improvement of the
algorithm in order to increase its accuracy by improved
signal-calibration techniques. Correcting the integration error
on a regular basis by using zero-velocity update techniques
could be an interesting and useful investigation way that have
already been used in other contexts [5].

The impact of the sensor location should be investigated
to select the best location both in terms of acceptability and
quality of measurements. Also, extended experiments should
be conducted to validate the application of this algorithm to
other kinds of motions.
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The design of the algorithm is driven by considerations
of embeddability, as it could be another feature of the
ActimedARM for personal, daily activity monitoring for our
system. Moreover, the use of quaternions for orientation
representation and calibration tends to be unavoidable as
they are efficient both in computational and mathematical
terms (i.e. small memory usage and no gimbal lock in
comparison with Euler’s angles). It is more than conceivable
that the trapezoidal method will be used in the embedded
version of the algorithm concerning its performances and the
computational effort required. Eventually, FIR filters would
be used because they can be used for real-time assessment
of the motion but IIR filters should not be excluded if their
loss of linear phase can be compensated because they tend
to have smaller orders.

Finally, the application of this algorithm for the objective
evaluation of the walk is to be investigated and could be of
great importance for an overall estimation of an individual’s
activity.
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APPENDIX

A. Mathematics

1) Projection and rotation: Let a(t) be the acceleration
measured in 〈i, j, k〉, the orthogonal sensor referential. The
acceleration can be expressed, in the referential of the
individual, as:

a(t) = a(t) · i+ a(t) · j+ a(t) · k
= ai(t) + aj(t) + ak(t)

With ai(t), aj(t) and ak(t), the actual acceleration values
along each base vectors of the referential. We can now
decompose a(t) in 〈i′, j′, k′〉, the orthogonal terrestrial ref-
erence frame by using the dedicated projection operator:

a′(t) = L′ · a(t)
= a(t) · i′ + a(t) · j′ + a(t) · k′

= ai′ (t) + aj′ (t) + ak′ (t)

In terms of measurements, the sensor can measure ai(t),
aj(t) and ak(t) which are the components of the acceler-
ation along the sensor basis vectors. We want to compute
ai′(t), aj′(t) and ak′(t) the orthogonal components of the
acceleration along each axis of the terrestrial reference frame.
For example, let ai′(t) be expressed by the combination of
measured values:

ai′ (t) = a(t) · i′

= (ai(t) · i+ aj(t) · j+ ak(t) · k) · i′

= ai(t) · i · i′ + aj(t) · j · i′ + ak(t) · k · i′

= ai(t).cos θi′i + aj(t).cos θi′j + ak(t).cos θi′k

With i · i′, j · i′ and k · i′ representing the projections of the
basis vectors of the sensor frame into the terrestrial frame,

i′. Thus, applying this to the other measured components of
the acceleration leads to the following relationships:

ai′ (t) = ai(t).cos θi′i + aj(t).cos θi′j + ak(t).cos θi′k (3)
aj′ (t) = ai(t).cos θj′i + aj(t).cos θj′j + ak(t).cos θj′k (4)
ak′ (t) = ai(t).cos θk′i + aj(t).cos θk′j + ak(t).cos θk′k (5)

Where θe′e is the angle between base vectors e′ of the
final reference frame and e of the origin reference frame.
This can therefore be noted a′(t) = L′ · a(t), or :[

ai′ (t)
aj′ (t)
ak′ (t)

]
=

[
cos θi′i cos θi′j cos θi′k
cos θj′i cos θj′j cos θj′k
cos θk′i cos θk′j cos θk′k

]
·

[
ai(t)
aj(t)
ak(t)

]
In the case of a rotation around the base vector k by an

angle θ, (3) (4) and (5) lead to these relationships [3]:

ai′ (t) = ai(t).cos θ − aj(t).sin θ

aj′ (t) = ai(t).sin θ + aj(t).cos θ

ak′ (t) = ak(t)

2) Quaternions: The conjugate of a quaternion q is de-
fined by the following relationships (With i.j.k = −1.):

q∗ =

 q0

−q

 =

 q0
−q1.i
−q2.j
−q3.k

 (6)

The product of two quaternion q and p is partially anti-
commutative and can be expressed:

q.p =

 q0.p0 − q1.p1 − q2.p2 − q3.p3
(q0.p1 + q1.p0 + q2.p3 − q3.p2).i
(q0.p2 − q1.p3 + q2.p1 + q3.p1).j
(q0.p3 + q1.p2 − q2.p2 + q3.p0).k

 (7)

A rotation around the vector v by an angle θ on the
reference frame 〈i, j, k〉 can be written qθ [3]:

qθ =

 cos θ
2

v. sin θ
2

 =

 cos θ/2
vi. sin θ/2
vj . sin θ/2
vk. sin θ/2

 (8)

Which is way smaller in terms of memory usage than the
equivalent 3× 3 rotation matrix.
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