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Abstract— Falls are a common cause of injuries and traumas
for elderly and could be life threatening. Delivering a prompt
medical support after a fall is essential to prevent lasting
injuries. Therefore, effective fall detection could provide urgent
support and dramatically reduce the risk of such mishaps. In
this paper, we propose a hierarchical classification framework
based on a novel anatomical-plane-based representation for
elderly fall detection. The framework obtains human skeletal
joints, using Microsoft Kinect sensors, and transforms them
to a human representation. The representation is then utilized
to classify the sensor input sequences and provide a semantic
meaning of different human activities. Evaluation results of the
proposed framework, using real case scenarios, demonstrate
the efficacy of the framework in providing a feasible approach
towards accurately detecting elderly falls.

I. INTRODUCTION

Falls can have devastating consequences for elderly and
may cause moderate to severe injuries, such as hip fractures
and head traumas which could increase the risk of early
death. It is estimated that one in every three adults age 65
and older falls each year[1]. According to the Centers for
Disease Control and Prevention [2], emergency departments
in 2011 treated 2.4 million nonfatal fall injuries among older
American adults; more than 689,000 of these patients had to
be hospitalized. Even if falling patients are not injured, they
develop a fear of falling causing them to limit their activities,
which results in reduced mobility and loss of physical fitness
that in turn increase their actual risk of falling [3].

A timely response to falls is crucial and can prevent
lasting injuries and save an older person’s self-reliance and
in some cases life. For many years, personal medical alert
systems have provided help at the touch of a button. These
systems help seniors when family cannot be with them
in cases of emergencies such as falls. When the medical
alarm is activated, the signal is transmitted to an alarm
monitoring company’s central station and medical personnel
are dispatched to the site where the alarm was activated. Un-
fortunately, traditional medical alarm systems are ineffective
if an elderly, after a fall, is knocked unconscious or the alarm
button is out of his/her reach. In such scenarios, the person
would be unable to activate the alarm to call for help.

With recent advancements in sensors, wireless networks,
and smart devices, many medical alert systems are now
equipped with fall detection technology built into the wear-
able help buttons. While this technology seems promising
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in cases where an individual falls and loses consciousness
before pressing the help button, there are some limitations
and concerns with existing products. For example, acoustic
systems that use microphones to detect and measure vi-
brations on the floor to identify a fall might not be very
accurate. Systems that rely on wearable sensors to detect
and analyze movements are ineffective if the elderly during
a fall is not wearing the device or the device’s batteries
are being recharged. Moreover, such wearable devices, if
accidently dropped, can cause a false positive where the
alarm is triggered but not by a fall. Visual systems that use
cameras to track and learn movement patterns to detect falls
suffer from invasion and privacy concerns.

In this paper, we propose a novel anatomical-plane-based
representation for human-body that is utilized in a hierar-
chical classification framework for detecting elderly falls.
We use Microsoft Kinect sensors to capture an RGB image
and a depth image streams for human activity analysis
to infer and track human joint positions. Based on these
skeletal joint positions, we propose a view-invariant Motion-
Pose Geometric Descriptor (MPGD) that consists of two
profiles describing the motion and the pose of human body-
parts, and capable of capturing the semantic meaning of the
performed activities at each frame. The whole sequence of
performed activities is then classified into falling or non-
falling event. Initial evaluation of the proposed framework
has been performed through extensive computer simulations
on real case scenarios using Kinect sensor. The results
indicate the benefits of the framework in accurately detecting
elderly falls while minimizing false positive alarms.

The remainder of this paper is organized as follows: in
Section II, we provide an overview of existing fall detection
systems and we discuss the related research that this work is
based on. Section III describes the anatomical-plane-based
human representation and the hierarchical fall detection
framework. Section IV presents the experimental simulation
setup and results. We conclude with final comments in
Section V.

II. RELATED WORK

Existing fall detection systems are classified into wearable
and non-wearable systems. Wearable systems rely on devices
that utilize several kinds of sensors such as accelerometers
and gyroscopes to detect falls [4], [5], [6]. Such devices
depend on the elderly to wear them all the time, which
might not be very convenient. In addition, those devices
require periodic recharging, which make them susceptible
to be forgotten to be worn. Moreover, such devices might
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not differentiate between a fall and a regular activity like
going down the stairs.

Non-wearable fall detection systems utilize environmental
devices such as 2D video cameras, motion-capturing sys-
tems, and RGB-D cameras. Rougier et al. [7] proposed a
method to detect falls by analyzing human shape deformation
during a video sequence using Gaussian mixture models.
Their approach fails to detect the fall when the person body
is showing small shape deformation such as when the person
is sleeping on the bed. In a different study [8], the 3D
head pose was tracked using monocular 2D cameras to crate
3D trajectory of the head to distinguish falls from normal
activities using 3D velocities. Auvinet et al. [9] proposed
an approach to detect falls based on reconstructing the 3-
D shape of an elderly person using multiple cameras. The
proposed system triggers an alarm when a major part of
the person’s volume distribution along the vertical axis is
abnormally near the floor.

In the aforementioned approaches, the input was either 2D
video, or the extracted human joint positions using a motion-
capturing system, or 3D-reconstruction using multiple cam-
eras. The use of 2D videos makes the approaches sensitive
to occlusions, cluttered background, shadow, variation in il-
lumination, and view-point changes, leading to low accuracy
in detecting falls. Although motion-capturing systems and
multiple-cameras systems may solve the above problems, the
requirement of mounting sensing devices on the people, the
calibration process of the sensors, and the high cost of these
equipments makes it infeasible.

Recently, Microsoft has offered Kinect sensor that com-
bines both RGB camera and depth sensor at a reasonable low
cost. Unlike 2D cameras, Kinect is capable of tracking the
body-movements in 3D for up to six persons. Furthermore,
using only the depth images, person’s privacy can be pre-
served. These advantages have attracted many researchers
to use Kinect sensors for human activity analysis and fall
detection. Zhang et al. [10] utilized 3D depth information
to construct a kinematic model for the monitored person to
extract features that are fed into a hierarchy classification
scheme and recognize the category of the person’s activities.
Huang and Pan [11] proposed a frame-by-frame fall detection
system based on real-time RGB-D cameras. Despite the
high accuracy rate achieve by their proposed system, the
system is based on a frame-wise classification which does
not take into consideration the temporal variations in the
falling event. Garrido et al. [12] utilized Kinect sensors in
a system that detects falls and triggers an alert. Gasparrini
et al. [13] proposed an automatic, privacy-preserving, fall
detection method that utilizes the Kinect depth sensor. In
their suggested method, a fall is detected if the depth blob
associated with a person is near the floor.

The main advantage of our proposed approach compared
to the aforementioned methods is the anatomical-plane-based
human representation. The proposed representation is seman-
tically meaningful and consists of motion and pose human
profiles that are constructed at each video frame to describe
human activities. In addition, we developed a hierarchy clas-

Fig. 1. Motion profile. (a) Left, a schematic diagram of the anatomical
planes [14] of a human in a stand-still pose. (b) Right, quantized anatomical
planes into semantically meaningful bins.

sification framework that utilizes the proposed representation
for analyzing the human activity in a video sequence. The
framework takes into consideration the temporal variations
of different activities, which reduces the false classification
rate that occurs when frames are classified independently.

III. METHODOLOGY

A. Anatomical-Plane-Based Human Representation

Human daily life activities can be viewed as spatiotem-
poral movements of body-parts such as hands, arms, feet,
legs, torso, and head. Thus, human activities can be defined
in terms of the pose and motion profiles of the body parts,
the relative temporal ordering, and the interdependency of
moving body-parts. Fall detection systems heavily rely on
the representation of the human activity. The more rele-
vant spatiotemporal information that is encapsulated in the
human activity representation, the higher the accuracy of
the detection system. Our goal is to build a human activ-
ity representation that encapsulates both the spatiotemporal
data and the associated semantic meaning in a descriptor
format. The descriptor captures the motion and poses of
human body-parts while preserving the temporal ordering of
the moving body-parts. Furthermore, similar spatiotemporal
configurations will have similar descriptors regardless of
the illumination conditions or the position of the motion-
capturing sensor of the person. We use Kinect sensor to
capture the activity of an elderly person. We acquire 3D
locations of the following twenty skeletal joints: hip center,
spine, shoulder center, head, L/R hand, L/R wrist, L/R elbow,
L/R shoulder, L/R hip, L/R knee, L/R ankle and L/R foot.
Based on these skeletal joint positions, we build a Motion-
Pose Geometric Descriptor (MPGD) that consists of two
profiles describing the motion and the pose of the human
body-parts. The MPGD is capable of capturing the semantic
meaning of the performed activities at each frame.

1) Motion profile: The movement of human body-parts
is accomplished by muscle contractions and can be viewed
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relative to other body parts. For example, moving the right
hand upwards can be viewed as a displacement vector
between the initial and the final positions of the right hand
with respect to the hip center. In anatomy science, various
body-parts are described in relation to three imaginary planes
(see Fig. 1): Sagittal plane (SP), Coronal plane (CP), and
Transverse plane (TP) [15]. Based on the anatomical planes,
we have developed a procedure that describes the motion
profile for the limbs, torso and the head of each human as
follows:

A1. We define first the hip center as the center of an
attached local coordinate frame for a human in the scene.
Then, the anatomical planes for a human are defined to be
planes spanned by three 3D points (see Fig. 1) as follow:

SP =< Phc,Psc,Ps > . (1)

CP =< Phc,Pls,Prs > . (2)

TP =< Phc,Plh,Prh > . (3)

Where Phc, Psc, Pls, Prs, Plh, Prh and Ps represent hip-
center, shoulder center, left shoulder, right shoulder, left hip,
right hip, and spine points, respectively.

A2. We next construct a sliding window of size W frames
over the input stream and calculate a motion profile for a
human within that window. Specifically, the motion profile
is constructed by computing the displacement vectors for
six 3D points (head, spine, right hand, left hand, right foot
and left foot) of the skeleton with respect to the hip center
point in the first frame in the window. By observing that the
intersection of the anatomical planes is dividing the 3D-space
around a human into 8 octants (see Fig. 1), we can determine
the motion direction of each of the six points by determining
the octant in which the displacement vector falls. This can
be determined by calculating the signed distance between
each displacement vector and each of the anatomical planes
to determine whether the motion is to the left, right, above,
below, in front or behind a specific anatomical plane.

A3. We quantize the anatomical planes by dividing each
plane into a number of bins (see Fig. 1) to determine
the semantic meaning of the observed motion. Each bin
corresponds to a specific motion direction such as rightward,
leftward, etc. Then, we project the displacement vector onto
each anatomical plane and determine which bin that contains
the projected vector.

A4. We store displacement vectors, signed-distances, and
bin number of the projected displacement vector for each of
the six 3D points over the anatomical planes as the motion
profile MFt

for each frame in the sliding window. Then, we
shift the sliding window to the right and return to step A1.

2) Pose profile: One of the challenging problems in de-
signing a pose profile is that motion that we perceive similar
is not necessary spatially similar. This results in producing a
large variety of the same performed activity. Müller et al. [16]
suggested a set of qualitative geometric features for efficient
activity classification of motion-captured data of a single
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Fig. 2. Collected dataset sample images.

human. In this study, we utilize a subset of the qualitative
geometric features to capture different fall poses.

Our pose profile for fall detection consists of two types
of relational pose features: joint-distance and angle-based
features. Joint-distance pose features Pose

jd are based on
calculating the Euclidean distance between the 3D joint
positions for the 20 skeletal joints. Joint-distance features
are calculated between a)human joints in a single pose and
b)human joints at two poses separated by time. Angle-based
features Pose

Pl are based on calculating the angels between
a)the torso and the lower limbs and b)the line that connects
the ankle with the knee, and the line that connects the knee
with the hips.

After constructing the motion and pose profiles, the
MPGD of a frame Ft is constructed by concatenating both
motion and pose profiles into one vector as follows:

MPGDFt
= [MFt

,Pose
jd
Ft
,Pose

Pl
Ft
]. (4)

B. Fall Detection

We propose a hierarchical fall detection framework that
consists of a representation layer and two classification
layers. At the representation layer, RGBD images are ac-
quired from a Kinect sensor, and the 3D joint positions
are estimated. Then we construct MPGD representation for
each input frame. We then train a set of support-vector-
machine (SVM) classifiers to classify each frame into one
of different states at the first classification layer. The state
of each frame describes the spatiotemporal configuration
of the elderly person in that frame (e.g., the person is
stand still or is stretching out his right arm). At the second
classification layer, the constraint dynamic time warping
(cDTW) is utilized to classify the whole sequence of states
generated from the SVM classifiers into falling or non-falling
activity. The use of cDTW allows processing large variation
in duration of human activity video sequences efficiently.
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TABLE I

THE RESULTS OF IDENTIFYING THE STATE OF FRAMES IN AN INPUT

VIDEO AT THE FIRST LAYER.

State Precision Recall F1-measure
(P) (R) 2*P*R/(P+R)

Stand still state 97.19% 96.39% 96.79%
Walking forward 100.00% 100.00% 100.00%
Walking backward 98.99% 100.00% 99.49%
Pending down for sitting 96.85% 98.65% 97.74%
Sitting 99.45% 100.00% 99.72%
Falling down from stand
still state

96.31% 96.67% 96.49%

Falling down from sit-
ting

96.28% 96.57% 96.42%

Fall state 97.37% 97.37% 97.37%
Average 97.81% 98.21% 98.00%

IV. EXPERIMENTAL RESULTS

A Microsoft Kinect sensor was used to collect a dataset
that consists of four types of human activities related to the
falling event as shown in Fig. 2. The four activities include:
walking, sitting on chair, falling from chair, and falling from
a standing pose. Four different individuals participated in
performing the activities resulting in a dataset that consists
of 66 sets with different views, speeds and activity styles.
Approximately, the dataset contains 14400 frames and 180
activity sequences. The length of each activity sequence is
80 frames on average. For each activity sequence, the videos
were captured at a rate of 15 frames per second (fps), the
RGB sequence of images at a resolution of 640 × 480,
the depth maps at a resolution of 320 × 240, and the 3-
dimensional coordinates of 20 person’s joints at each frame.

We use 5-fold cross validation to evaluate our fall detection
framework. Four folds are used for training and one for
testing. The individual in testing fold does not appear in
training. The window size for MPGD is set to three frames.
A one-vs-one approach was used to train a set of SVM
classifiers to classify each frame into one of the 8 states. For
SVMs, the regularization parameter C and its radial-basis
function (RBF) kernel parameter σ were selected based on
the cross-validation procedure (Regularization term C=50,
RBF parameter=.1).

Table I shows the precision, recall, and the F1-measure
results for identifying the state of frames. Precision repre-
sents the fraction of frames classified in a specific state that
are correctly classified. For example, 96.31% of the frames
that were classified as ”falling down from stand still” were
correctly classified. Recall measures the fraction of correctly
classifying frames for a specific state. For example, the
system was able to classify 96.67% of the ”Falling down
from stand still” frames correctly. The first layer in our
framework that uses MPGD was able to accurately detect
the state of input video frames with an average of 97.81%,
98.21%, and 98.00% for precision, recall, and F1-measure,
respectively.

The precision, recall, and F1-measure results of the second
layer in classifying predicted state sequences to describe
whether the performed activity represent a fall or not are
98.01%, 97.13%, and 97.57%, respectively. The results in-
dicate the efficacy of our proposed classification framework
using MPGD for fall detection.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel elderly fall detection
framework based on an anatomical-plane-based representa-
tion. The framework has been evaluated using a dataset of
human activities related to fall events using Microsoft Kinect
sensors. The experimental results demonstrate the accuracy
in detecting elderly falls.

For future work, we plan to study the use of multiple
Kinect sensors to monitor a person from different angels
and different rooms. The use of more than one sensor would
improve the usability and accuracy of our framework. In
addition, tracking more than one person simultaneously is
another future research direction.
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