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Abstract— Patients spend the vast majority of their 

hospital stay in an unmonitored bed where various 

mobility factors can impact patient safety and quality. 

Specifically, bed positioning and a patient’s related 

mobility in that bed can have a profound impact on risks 

such as pneumonias, blood clots, bed ulcers and falls. 

This issue has been exacerbated as the nurse-per-bed 

(NPB) ratio has decreased in recent years. To help assess 

these risks, it is critical to monitor a hospital bed’s 

positional status (BPS). Two bed positional statuses, bed 

height (BH) and bed chair angle (BCA), are of critical 

interests for bed monitoring. In this paper, we develop a 

bed positional status detection system using a single 

Microsoft Kinect. Experimental results show that we are 

able to achieve 94.5% and 93.0% overall accuracy of the 

estimated BCA and BH in a simulated patient’s room 

environment. 
 

I. INTRODUCTION 

Hospital quality and patient safety issues have been of 

increasing concern in the past few decades [1]. We propose 

that a critical, but often overlooked, component of patient 

quality and safety is related to a patient’s in-bed behavior 

(IBB), where they often spend much of their hospital stay.  

Important IBBs include limb mobility, sleeping postures, 

wandering movement, head of bed positioning and bed 

entries and exits. For example, it has been shown that most 

falls occur in the patient’s room during attempts to get in or 

out of bed [2]. These falls cause serious health problems 

such as trauma, fracture and even deaths [3]. Patient safety 

issues as such these can be addressed by sufficient 

monitoring and care delivery [1]. However, most hospitals 

rely on manual monitoring, which degrades nursing 

efficiency while still not ensuring a consistent outcome. In 

the past years, a few intelligent systems have been 

developed to monitor some specific IBBs, such as a 

commercial bed-exit alarm systems [4] and a proposed bed 

monitoring system using multi-modal sensors [5]. Although 

these systems have achieved promising performance, they 

still have many limitations. The bed-exit alarm systems are 

very costly and usually need to be reinitialized when the 

patient reenters the bed and reinstalled when the bed changes 

the position. The multi-modal sensors are costly, 

inconvenient to deploy and also intrusive for the patients. 
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An IBB monitoring system using a single video camera is 

thus believed to provide a cheaper and easier alternative to 

detect abnormal behavior and prevent safety issues such as 

bed falls. A first step towards this type of system is a vision-

based sensing device which provides good estimation of bed 

position or edges to reduce false alarms. The latest research 

work [6] has provided an effective approach to estimate the 

bed edges from color images. It also robustly measures 

slight changes of bed position, which is needed in the real 

world on of a patient’s hospital room. However, this 

approach has three limitations which need to be addressed. 

First, a system which depends only on the color image 

information will fail in the dark. Second, a system which 

only estimates the bed edges in 2D will not be as effective as 

a 3D analysis. Third, there may be privacy issue related to 

the processing of color images. Our proposed system is able 

to monitor the patient’s bed in various lighting changes and 

does not process any color information. In addition, it is able 

to provide 3D bed edges as well as bed statuses such as bed 

chair angle (BCA) and bed height (BH). Since patient beds 

with auto controls of BCA and BH are widely used in the 

patient’s rooms, these measurements are important.  

The Microsoft Kinect device [7] has motivated innovative 

solutions to the development of human-machine interactive 

applications based on its inexpensive price and effective 

depth sensor. The depth sensor provides the third dimension 

needed so that objects are able to be described in 3D 

patterns. Moreover, depth sensing is independent of visible 

lighting so that the system performs effectively in both light 

and dark environment. The Kinect has been recently utilized 

in healthcare applications such as the fall detection [8] and 

gait analysis [9].  

In this paper, we utilize the Kinect depth information to 

estimate the 3D bed edges, BCA and BH. We have 

implemented the proposed system in real time using Kinect 

SDK [7] and openCV. The Kinect device was installed in a 

simulated patient room and bed statuses were monitored 

constantly through the graphic user interface (GUI) at the 

remote site. The experiments described were designed to 

evaluate the robustness of the system by introducing 

scenarios of lighting changes and slight bed position 

changes. 

The rest of the paper is structured as follows: Section II 

describes the bed status detection algorithm using depth 

sensing. Section III presents experimental design, results and 

analysis. Section IV concludes the paper. 

II. BED STATUSES DETECTION USING DEPTH SENSING 

A. General description of Kinect depth sensing 

    Kinect depth image is generated by the laser light 

patterns. The pixel intensity of the depth image is in 
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grayscale and is proportional to the physical distance 

between the nearest object at that pixel location and the 

sensor center. Therefore Kinect is able to estimate the 3D 

pattern of the objects in its skeleton coordinate system. The 

depth resolution is 480 × 640 pixels and the operating range 

is around 2 ~ 5 meters. Objects out of the range will produce 

invalid pixels of zero intensity. Interesting readers please 

refer to [7]. 

B. The proposed 4-phase bed statuses detection algorithm 

Figure 1 depicts the proposed 4-phase bed statuses 

detection algorithm using depth sensing. Figure 1-(a) shows 

a frame of raw color image in which the patient’s bed (Hill-

Rom Advance2000) is placed in the center of the room. The 

bed consists of two sections. The surface in pink is called 

head section which rises at certain BCA; the other in light 

green is called foot section which is placed horizontally but 

elevates at certain BH. Each phase is specifically described 

in the following context. 

 

                    
      (a) Original color image            (b) Original depth image 

 

                           
                  (c) Phase I                                (d) Phase II. 

 

                        
                 (e) Phase III.                             (f) Phase IV. 
Figure 1.  The proposed 4-phase bed statuses detection algorithm using 

Kinect depth sensing.  

 

1) Phase I. Frames average 

The corresponding depth image is shown in Figure 1-(b). 

In real-time applications, depth frames are sequentially 

captured and processed. We have observed that over 

sequential raw depth frames the area around the bed edges 

usually produces flickering effects, making the edge shape 

highly noisy and unstable. The noisy edges will result to 

poor edges and lines detection in the following phases. 

Gaussian blur [10] and moving average are the most 

effective refinement filters to reduce edge noise. To reduce 

the computational cost, we utilize a simple exponential 

weighted moving average as described by 

                    
      (   )    

   (       )           (1) 

where    represents the current captured raw depth frame at 

time  ;   
  and     

  represent the averaged frame at time 

  and    .   
  is used for processing and updating     

 .   
  

is initialized as all zeros. In the preliminary experiments, we 

found that the forgetting factor       is sufficient to 

reduce the edge noise and make the edges more stable in 

sequential processing frames (see Figure 1-(c)). This will 

improve the performance in the following phases. Smaller   

(  <0.3) will dramatically degrade the real-time performance 

since it takes more time to adapt to changing bed statuses. 

2) Phase II. Edge detection and dilation 

    Edge detection followed by the dilation process is then 

applied to   
 . We use the traditional Sobel edge detector 

provided by openCV. The output grayscale image with 

detected edges is then converted to a binary image. To 

further reduce the residual noise on the edges, dilation is 

then applied to the binary image with a kernel dimension of 

3 by 3 pixels. Figure 1-(d) shows one frame of the processed 

binary image in which bed edges are detected. 

3) Phase III. Lines detection and classification 

Figure 2 shows the Kinect 2D depth image coordinate in 

which two lines are defined by their polar coordinate. 

 
Figure 2.  The polar coordinate representations (θ - ρ) of two solid lines L1 

(     ) and L2 (     ) intersecting at point Q in the Kinect depth image 
coordinate (X - Y) with the resolution of 480 (Y) × 640 (X) pixels. V1 and 

V2 are the endpoints of L1 and L2 with the closest distance. 

 

    In Figure 2, two lines (L1 and L2) intersect at point Q are 

drawn in the image coordinate and their corresponding polar 

coordinate representations are defined as well with   

[      ) and   (     √             ) in pixels. 

Note if L1 is perpendicular to L2, we have two constraints 

                                |     |    
   and                           (2) 

                                 
    

  ‖   ‖  .                         (3)  

‖ ‖ denotes Euclidean norm of ·. The Hough transform 

presents that any line in the image domain has unique 

transform in the θ – ρ domain. Straight lines are then 

detected using Standard Hough Line Transform (SHLT) 

[11]. Without classification, the SHLT detects all the 

possible lines including the false positives not the part of the 

bed edges or outside the bed region. Therefore the following 

two assumptions are made for developing more robust lines 

classification algorithm. 

Assumption 1. we assume that only the head line (HL) and 

head side line (HSL) of the head section as shown in red and 

green respectively in Figure 1-(e) are used for detection. The 

reason is that in a real patient’s room, the patient usually has 

a blanket which covers most part of the foot section side 

edges and makes the edges highly noisy and unstable in the 

depth image. On the other hand, HL and HSL are rarely 

covered by any objects so they become the only but the most 

reliable features for bed statuses detection. 

Assumption 2. we assume that the bed position changes in a 

slight transition among the three placement in Figure 3. The 

reason for this assumption is that in the real patient’s room, 

the patient’s bed is usually not placed at its original position 
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at each time after the patient receives the bedside caring or 

been ambulated from other departments. 

 

                
                   (a)                                    (b)                                   (c) 
Figure 3.  The common bed placement in a patient’s room. (a) Rotate left; 

(b) Rotate left but almost right against the depth sensor; (c) Rotate right. 

 
 

 
 

Figure 4.  The pseudo code for the lines classification algorithm. 
 

    Figure 4 shows the lines classification algorithm based on 

Assumption 1 and 2. Although physically HL and HSL are 

exactly perpendicular to each other, this is not true when 

they are displayed in the image. Thus we introduce factors α 

and β to relax the constraints of θ and ρ respectively so that 

the classification is more robust to the angle distortions in 

the image space. We choose α=20
o
 and β=30 pixels for our 

settings. In addition, we choose      pixels to filter out 

the lines which do not intersect or are not close enough to 

the detected HL. In summary, the algorithm classifies HL 

first and determine the type of placement (rotate left or 

right), then classifies HSL based on the placement. 

4) Phase IV. Bed statuses estimation on 3D point cloud 

In this phase, the detected HL and HSL are used to 

generate the 3D bed edges, estimate BCA and BH. To 

achieve this purpose, N pixels with equal interval of L/(N-1) 

(L is the line length) on the detected HL and HSL are chosen 

to be mapped into corresponding N-point cloud. The Kinect 

SDK provides the functionality to perform the mapping from 

depth image space to skeleton space and also estimate the 

ground plane equation [7]. The point clouds of the HL and 

HSL are used to generate their 3D regression lines using N-

point ordinary least squares based regression. Once we have 

the 3D representations of HL and HSL, and if the length of 

the side edge of the foot section is also known, we are able 

to estimate all bed edges in 3D as shown in purple lines in 

Figure 1-(f).  

To estimate BCA and BH, we suppose the Kinect SDK 

estimates the ground plane by 

                           ̂   ̂   ̂   ̂ ,                        (4) 

with its estimated normal vector  ̂  [ ̂  ̂  ̂]
 
. And the 

coordinate of the i
th

 point of the N-point cloud mapped from 

the detected HL is    
  [        ]

              . 

Thus the distance between    
  and the ground plane 

denoted by  ̂  is computed by  

                            ̂  | ̂
    

   ̂| ‖ ̂‖ ,                         (5) 

Then we take the average  ̂   
 

 
∑  ̂ 
   
   . The regression 

model of HSL provides the estimation of both the length  ̂ 
and the unit vector      of the regressive line   Thus the 

estimated    ̂, the angle between the regressive line and the 

ground plane is computed by  

                           ̂        (| ̂     | ‖ ̂‖⁄ )                 (6) 

Figure 5 describes the bed configuration in the Kinect 

skeleton space. Therefore the estimated   ̂ is obtained by 

                            ̂    ̂   ̂     (   ̂) .                         (7) 

    To reduce the high computational cost caused by N, we 

choose N=10 in this phase. In real environment,  ̂ is difficult 

to estimate since the HSL is usually blocked partially in the 

image by the patient’s arms or the blanket. To improve the 

estimation accuracy of   ̂, we assume that  ̂ is known in 

advance (  = 0.6 meters for this particular bed model). 

 

 
Figure 5.  The configurations of the patient’s bed in the Kinect skeleton 
space coordinate. Red dots represent the point cloud mapped from the 

detected HL and green dots represent the one mapped from the detected 
HSL. 

III. EXPERIMENTAL DESIGN, RESULTS AND ANALYSIS   

A. Experimental design 

In the experiments, we are able to evaluate the accuracy of 

the BCA and BH estimated by the proposed system since we 

can read their groundtruths directly from the ‘Head Angle 

and Elevation Indicator’ located beneath the foot section of 

the bed. To evaluate the system, we collected two groups of 

data which consists of 4000 bed images taken in our 

simulated patient’s room. Group I consists of 2000 images 

taken with the light on and Group II consists of the rest 

images taken with the light off (completely dark). For each 

group, 250 images were taken for one of the 8 scenarios as 

shown in Figure 6. In each scenario, the bed is placed at a 

different position with changing BCAs and BHs. We 

consider 5 BCAs ─ 0
°
, 15

°
,
 
30

°
, 45

°
, 60

°
 (full raise) and 5 
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BHs in meters ─ 0.2, 0.4, 0.6, 0.8, 1.0. In each scenario, we 

have 10 images for each combination of BCA and BH. 

 

 

      (a)                          (b)                          (c)                           (d)     

 

      (e)                           (f)                          (g)                          (h)     

Figure 6.  Images (a) – (h) show 8 scenarios of different bed positions. A 
human dummy is lying in the bed covered by a blanket to simulate the 
patient’s room environment.    

 

B. Experimental results and analysis 

The performance is evaluated by calculating the root mean 

squared errors (RMSEs) of the estimated BCAs and BHs and 

the corresponding overall accuracy in percentage denoted by 

ACC (ACC=1 − RMSE / maximum operating ranges of BCA 

or BH). The results of each group are shown in Table I. 

 
Table I. RMSEs and ACCs of the estimated BCAs in degrees and BHs in 

meters for Group I and Group II.  
                 Group I Group II 

BCA RMSE 3.16o, ACC 94.7% RMSE 3.34o, ACC 94.4% 

BH RMSE 0.07, ACC 93.0% RMSE 0.07, ACC 93.0% 

 

Table I shows that we are able to achieve about 94.5% and 

93.0% overall estimation accuracy of BCA and BH 

respectively for both groups. The results also show that the 

detection performance in the lighting room (Group I) and 

dark room (Group II) makes no significant difference. This 

observation validates that the depth sensing is independent of 

visible light.  

In the following, we provide the analysis of three possible 

reasons which cause the estimation errors and their solutions. 

1) The poor estimation of the ground plane provided by 

Kinect SDK directly results to poor estimated BCAs and BHs 

according to equations (5-6). This device-related error can be 

reduced by calibrating the Kinect camera and using the 

calibrated intrinsic/extrinsic camera parameters to measure 

the ground plane in advance. 2) The small z-axis distance of 

the skeleton coordinate (Figure 5) between the background 

objects and the head section of the bed results to poor or no 

detection of HL and HSL edges due to the limited resolution 

of the depth intensity. In the preliminary experiments, we 

found that the distance larger than 0.3 meters is robust 

enough to detect the required edges. 3) The possible 

extension of the HL or HSL due to their alignment with false 

detected edges out of the bed region. This can be addressed 

by placing the bed against the background objects with 

smooth physical surface such as a wall. 2) and 3) are seen as 

the limitations of the proposed system but the restrictions for 

its real deployment are easily accommodated by most of the 

normal patient’s rooms. 

IV. CONCLUSIONS 

This paper introduces a method to automatically detect a 

hospital bed’s edges and statuses using depth sensing of a 

Kinect device. We were able to achieve 94.5% and 93.0% 

overall accuracy of the estimated BCA and BH in the 

simulated patient’s room environment. The performance, 

although not sufficiently high for measurement purpose, is 

very promising for supporting patient safety projects.  

This work establishes the base for the future development 

of various hospital in-bed applications such as bed-exit 

movement, bed-fall-prevent alarm and in-bed movement 

detection systems using Kinect depth sensing. In the next 

step, we will extend the current work by utilizing more robust 

computer vision techniques to improve the bed statuses 

estimation accuracy in more realistic environment, such as 

when the patient sits on the bed edges or doctors block the 

camera view. We will additionally generate an entire 3D 

model of the patient’s bed using real hospital dataset. 

The final result of this work will be to improve quality and 

safety in a hospital room.  Examples may include the ability 

to alert a nurse if a patient’s head of their bed is set 

incorrectly, if they have not moved in a certain period of 

time, or if they appear to be at high risk of falling.  
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