
  

 

Abstract— Gait is a sensitive biomarker of decline in both 

cognitive and physical function. Therefore, the collection of gait 

data is an important feature of clinical assessments. 

Accelerometer-based body worn sensors are quickly becoming 

the preferred tool for assessing gait because they are small, 

useable in a wide variety of settings, offer more continuous 

spatio-temporal analysis and are inexpensive when compared 

with traditional gait assessment methodologies. The purpose of 

this study was to determine the validity and within test 

reliability of a low cost body worn movement sensor with 

associated algorithms to assess gait in a large group of older and 

younger healthy adults. We collected gait data over intermittent 

walks on an instrumented walkway for a within trial validation 

and also used the same accelerometer derived gait data for a 

within test reliability analysis. ICCs for validation and 

reliability were >0.756 and >0.965, respectively. 

 

I. INTRODUCTION 
The assessment of gait provides simple, low cost, quick 

and powerful clinical tool with a wide range of applications 
including investigations of ageing. For example, gait speed 
has been shown to predict longevity [1]. Gait is a 
multifaceted model comprising several different independent 
parameters [2]. Lord et al outlined the most important spatio-
temporal parameters of gait including step time, stride time, 
step length, step velocity, stance time and swing time that 
relate to motor, cognitive and behavioural attributes [2]. 
Estimation of these gait parameters by objective means has 
begun to play a key part in investigation of numerous 
neurological-related pathologies and healthy ageing [3-5]. 
However, because the traditional, expensive and specialised 
equipment used to quantify gait is limited to locations such 
as academic research centres or specialised clinical units, 
gait remains an under-utilised outcome. The use of small 
body worn accelerometer-based sensors to characterise and 
quantify gait is seen as a potential solution to the problem of 
equipment restrictions [5]. Over the last 20 years, there have 
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been rapid developments in the use of accelerometry for 
assessment of human movement [6]. Within the domain of 
gait, there has been a steady rise in the number of algorithms 
developed for use in analysing data from accelerometer-
based sensors located on the torso (chest, waist, lower back). 
Simple algorithms extracting basic gait parameters such as 
step detection and step count [7, 8] have been surpassed by 
those able to estimate specific spatio-temporal gait 
parameters  including step time and step length [9, 10]. 
Through use of a combination of these algorithms it should 
be feasible to near replicate a full gait model as defined by 
[2].  

Current approaches to assess gait in a clinical setting use 
mean values from repeated passes over a predefined distance 
[3, 4]. While it is vital that accelerometer-based sensors with 
associated algorithms undergo stringent testing to ensure 
they quantify gait data correctly, it is also necessary to test 
their reliability during continuous recording where averaged 
values are to be used. Therefore, the purpose of this study 
was to perform a within test reliability study for a low cost 
body worn sensor which employed a novel combination of 
two gait algorithms during prolonged walking at different 
walking speeds in healthy younger and older adults. The 
application of this system will show the potential of 
instrumenting gait assessment in any suitable environment. 

II. METHODS 

A. Participants 

Twelve young healthy adults aged 20-40 years (YHP) 
and twelve older healthy adults (OHP) were recruited. 
Participants were recruited from staff and students at 
Newcastle University and members of Newcastle University 
VOICENorth, an older volunteer group who participate in 
research. Participants were recruited only if they had no 
physical or neurological disability that might impede their 
movement or balance. All participants gave informed written 
consent and ethical consent was granted by the National 
Research Ethics Service (County Durham and Tees Valley). 

B. Equipment 

Each participant wore an Axivity AX3 sensor (Axivity, 
York, UK) located on the lumbar vertebrae (L5), Figure 1. 
The sensor was held in place by double sided tape and 
Hypafix (BSN Medical Limited, Hull, UK). The sensor was 
programmed to capture at 100-Hz (16-bit resolution) and at a 
range of ±8g. Recorded accelerations were stored locally on 
the sensor’s internal memory as a raw binary file that was 
downloaded upon the completion of each walking trial. 
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To validate the accelerometer-based sensor and its 
algorithms, the GaitRite instrumented walkway was used as 
the gold standard reference. The GaitRite dimensions were 
7.0m × 0.6m and had a spatial accuracy of 1.27cm and a 
temporal accuracy of 1 sample (240Hz, ~4.17ms). Previous 
studies have verified the GaitRite as a valid and reliable 
device for measuring mean gait characteristics in healthy 
younger and older adults [11]. In addition, video recording 
was used as the reference for total step count during each 
walking trial. 

 
Figure 1.  Attachment of the sensor on the lower back, L5 

C. Experimental protocol 

Participants were instructed to perform 2 walking tasks at 
self-selected speeds under the normal (preferred) and fast 
conditions. Each walk was performed until 5 laps of a 25m 
route were completed as highlighted by Figure 2. Gait was 
repeatedly sampled as participants walked over the GaitRite 
mat which was placed in the circuit. This methodology was 
adopted based upon previous findings that the use of a 
continuous walk of no fewer than 30 steps is recommended 
when examining the reliability of gait [12]. Following each 
walk, participants were asked to remain still for 1 minute 
before being told to commence their next walk. All walks 
were performed in the same order: normal followed by fast. 
The first and last walks over the mat were ignored with the 
middle three walks used for analysis (labelled here as T1, T2 
and T3) to compare as near as possible steady state walking 
speed. 

 

 
Figure 2.  Representation of the 25m track with highlighted section for 

direct comparison with the GaitRite instrumented walkway. 

D. Algorithms 

After testing, data were downloaded to a computer and 
analysed using a specially written MATLAB program. Firstly 

the times for initial and final contacts (IC and FC, 
respectively) were extracted from the accelerometer data 
resulting in the estimation of step time and stride time. 
Secondly, step length was estimated which then allowed for 
the final estimation of step velocity, based upon the 
relationship between step time and step length. These 
parameters were extracted using the following methods: 

 McCamley et al [9] estimated the IC and FC events 
from a continuous wavelet transform (CWT) of the 
vertical acceleration (av) which was integrated and 
then differentiated using a Gaussian CWT with ICs 
being the local minima. A further differentiation 
resulted in the local maxima being defined as the FC 
events. During testing it was observed that the 
algorithm detected spurious (false) IC events, Figure 
3. Thus the algorithm was updated based upon 
previous methodology to account for this error [8]. 

 

Figure 3.  An example of the McCamley algorithm with supriously 

detected IC events (pink circles) 

 Step length (1) was found from the method 
introduced by Zijlstra et al [10], which is derived 
from the inverted pendulum model. In this method, 
changes in the centre of height of the centre of mass 
(h, as derived from the accelerometer) as well as the 
know pendulum length (l, height of sensor from 
ground) provide an estimation for step length: 

  (1) 

E. Data segmentation 

Data from the accelerometer were segmented for direct 
comparison with the steps on GaitRite. This was achieved 
from a combination of the video recording and the MATLAB 
program as follows: from initiation, the number of steps to 
GaitRite were counted as well as the number of steps on and 
back around to GaitRite for the 5 walks over GaitRite. The 
MATLAB program counted the number of steps (as estimated 
from the algorithms) and segmented the accelerometer data 
based upon the algorithm count and video count. For the 
purposes of this study the middle 3 trials (T1, T2 and T3) 
over the GaitRite were used for analysis. This was to assess 
walking at constant speeds and to avoid problems caused by 
higher and lower speeds during the first and fifth passes, 
respectively. 
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F. Statistical analysis 

Means and standard deviations were calculated for 
averaged data at each speed condition for both YHP and 
OHP. The normality of data distributions were tested with a 
Shapiro-Wilk test. A repeated measures general linear model 
(GLM) was used to test for within trial differences for the 
extracted gait parameters. Levels of agreement were 
expressed as intraclass correlation coefficients (ICCs) as 
type (2, k) for validation (GaitRite v. Axivity) and 
intrasession reliability (Axivity v. Axivity) analysis. 
Independent sample t-test compared group characteristics. 
The statistical significance was set at p < 0.05. 

III. RESULTS 

Table I shows the group characteristics. Although this 
study was not designed to compare age groups it should be 
noted that there were no significant differences between 
YHP and OHP for height or weight.  

TABLE I.  PARTICIPANT CHARACTERISTICS 

Characteristic YHP (N=12) OHP (N=12) 

Gender (M/F) 7 / 5 5 / 7 

Age (years) 32.5 ± 4.8 65.0 ± 8.8 

Height (cm) 171.3 ± 9.2 169.2 ± 8.7 

Weight (kg) 67.9 ± 14.7 70.1 ± 14.4 

 

Tables II and III show the descriptive gait parameters 
during each trial for the YHP and OHP, respectively. There 
were no statistically significant differences between trials for 
most gait parameters in either age group except for step 
length (p = 0.001) and step velocity (p = 0.002) for the YHP. 
Trial 3 showed significantly lower step length in comparison 
with trial 1 (p = 0.003) and trial 2 (p = 0.017), respectively. 
As a result, there was a significantly lower value for step 
velocity in trial 3 compared to trial 1 (p = 0.005) and trial 2 
(p = 0.035). 

TABLE II.  MEAN ± STANDARD DEVIATION OF ESTIMATES OF GAIT 

PARAMETERS OBTAINED USING AXIVITY FOR THE YHP FOR 3 TESTS 

Variable T1 T2 T3 

Preferred walking speed 

Step time (s) 0.6 ± 0.0 0.6 ± 0.1 0.6 ± 0.1 

Stride time (s) 1.1 ± 0.1 1.10 ± 0.1 1.1 ± 0.1 

Step length (cm) 76.5 ± 10.1 77.52 ± 11.3 78.0 ± 10.4 

Step velocity (cm/s) 140.9 ± 22.8 142.95 ± 23.8 143.8 ± 23.4 

Fast walking speed 

Step time (s) 0.50 ± 0.1 0.5 ± 0.1 0.5 ± 0.0 

Stride time (s) 1.0 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 

Step length (cm) 91.4 ± 13.8 91.0 ± 13.4 88.3 ± 12.6a 

Step velocity (cm/s) 184.3 ± 30.1 182.8 ± 31.4 176.0 ± 26.4a 
a.
 p < 0.05 

 

 

TABLE III.  MEAN ± STANDARD DEVIATION AXIVITY VALUES FOR THE 

 OHP FOR 3 TESTS WITH SIGNIFICANT DIFFERENCES (IF ANY) 

Variable T1 T2 T3 

Preferred walking speed 

Step time 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 

Stride time 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 

Step length 80.8 ± 10.6 81.2 ± 11.3 79.9 ± 10.8 

Step velocity 154.2 ± 22.1 154.9 ± 23.1 152.4 ± 21.9 

Fast walking speed 

Step time 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 

Stride time 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 

Step length 89.0 ± 10.8 88.1 ± 10.2 87.0 ± 10.3 

Step velocity 186.7 ± 26.3 185.4 ± 27.7 182.2 ± 26.9 

Tables IV and V show the ICCs for the validation 
(Gaitrite v. Axivity) and intrasession reliability (Axivity v. 
Axivity) analysis. There was excellent validation between all 
gait parameters for the YHP (ICCs, 0.865 – 0.999). 
Estimates of step time and stride time were excellent for the 
OHP (0.995 – 0.999) but validation values were slightly 
reduced for step length and step velocity during preferred 
and fast walking speeds (ICCs, 0.756 – 0.929).  

TABLE IV.  ICCS (2, k) FOR VALIDATION AND RELAIBILITY FOR EACH 

TRIAL IN YHP 

Variable Validation Reliability 

 T1 / T2 / T3 T1-T2 / T1-T3 / T2-T3 

Preferred walking speed 

Step time 0.999 / 0.998 / 0.999  0.993 / 0.994 / 0.992 

Stride time 0.999 / 0.998 / 0.999 0.994 / 0.993 / 0.993 

Step length 0.929 / 0.926 / 0.929 0.983 / 0.974 / 0.984 

Step velocity 0.963 / 0.962 / 0.960 0.988 / 0.977 / 0.986 

Fast walking speed 

Step time 0.998 / 0.994 / 0.996 0.992 / 0.984 / 0.983 

Stride time 0.998 / 0.997 / 0.994 0.994 / 0.983 / 0.988 

Step length 0.910 / 0.906 / 0.865 0.988 / 0.979 / 0.980 

Step velocity 0.941 / 0.942 / 0.919 0.986 / 0.965 / 0.970 

TABLE V.  ICCS (2, k) FOR VALIDATION AND RELIABILITY FOR EACH 

TRIAL IN OHP 

Variable Validation Reliability 

 T1 / T2 / T3 T1-T2 / T1-T3 / T2-T3 

Preferred walking speed 

Step time 0.995 / 0.995 / 0.995 0.990 / 0.987 / 0.997 

Stride time 0.997 / 0.995 / 0.998 0.994 / 0.992 / 0.998 

Step length 0.929 / 0.832 / 0.787 0.990 / 0.983 / 0.973 

Step velocity 0.853 / 0.855 / 0.810 0.990 / 0.979 / 0.973 

Fast walking speed 

Step time 0.998 / 0.997 / 0.999 0.997 / 0.997 / 0.995 

Stride time 0.997 / 0.998 / 0.999 0.998 / 0.997 / 0.997 

Step length 0.782 / 0.756 / 0.788 0.977 / 0.969 / 0.986 

Step velocity 0.853 / 0.862 / 0.859 0.982 / 0.973 / 0.985 
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 The intrasession reliability of the Axivity and associated 

algorithms for the estimation of step time, stride time, step 

length and step velocity were excellent for both YHP and 

OHP during tests at both walking speeds (ICCs, 0.965 – 

0.998).  

IV. DISCUSSION 
The purpose of this study was to perform a within test 

validation and reliability study for a low cost body worn 
sensor which employed a novel combination of two gait 
algorithms during prolonged walking at 2 different speeds. 
This study shows that the instrumentation of gait can be 
easily achieved to capture the important spatio-temporal 
parameters in a cost effective and robust manner. 

All gait parameters estimated by Axivity were validated 
within the YHP group for both walking speeds where ICCs 
were >0.865. For the OHP, there were similar levels of 
validity in step time and stride time but the estimates of step 
length (ICCs > 0.756) and subsequently step velocity (ICCs 
>0.853) were lower although still comparable to other 
similar studies [13] and within acceptable validation values 
[11]. The reduced agreement in older adult data can be 
attributed to natural ageing where algorithm dependant 
signal characteristics can differ to younger adults [10]. In 
addition, individualised correction factors for step length 
estimation should be considered during continuous walking 
in older adults where this has been previously recommended 
examined in a similar group and pathology [14, 15]. The 
intrasession reliability results also proved to be acceptable 
during steady state walking for 2 gait speeds. The 
intrasession results for the sensor and algorithms revealed 
excellent agreement for both groups (ICCs >0.965). This 
within test validation and reliability study was a necessary 
undertaking as many studies incorporate intermittent walks 
within their testing protocol and pool gait data from 
numerous passes [2]. We have shown that gait data acquired 
from the sensor and the algorithms used to quantify the gait 
parameters during steady state walking at 2 different gait 
speeds, can be pooled from intermittent passes as the data is 
highly valid and reliable.  

Plausible explanations for the differences between the 
mat and sensor with algorithms have been reported 
previously [13]. In addition, manually observed steps on, and 
progression to the next pass on the mat were used to segment 
the accelerometer data via MATLAB. While the agreement 
between the two systems was excellent for step count 
estimation, the number of steps and subsequently the 
distinction between left and right for some passes over the 
mat were not identical for each pass leading to potential 
errors in the identification of left and right steps.  

Future work will focus on a full replication of a gait 
model [2] in healthy older adults with a single body worn 
sensor, in large cohorts for intervention-based studies

1
.  

V. CONCLUSION 
This study has shown the within test validity and 

reliability of a low-cost accelerometer-based sensor with an 
algorithm combination for estimating the gait parameters of 
step time, stride time, step length and step velocity. The 
sensor arrangement and algorithm combination are valid and 
reliable tools for quantifying gait during continuous walking 

in both younger and older adults which will have practical 
applications in large clinical and intervention based studies

1
 

for measuring health and wellbeing in older adults [5]. 
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