
  

 
 

Figure 1. Electrode placement 
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Abstract— Individuals with very high spinal cord injuries 

(e.g. C1-C3) may be ventilator-dependent and therefore unable 

to support speech breathing. However, their facial musculature 

is intact, given that these muscles are innervated by cranial 

nerves. We developed a system using surface electromyography 

(sEMG) recorded from facial muscles to control a phonemic 

interface and voice synthesizer and tested the system in healthy 

individuals. Users were able to use five facial gestures to control 

an onscreen cursor and the phonemic interface. Users had 

mean information transfer rates (ITRs) of 59.5 bits/min when 

calculating ITRs using the number of phonemes selected. To 

compare with orthographic systems, ITRs were also calculated 

using the equivalent number of letters required to spell the 

selected word. With this calculation, users had a mean ITR of 

70.1. Results are promising for further development and testing 

in individuals with high spinal cord injuries. 

I. INTRODUCTION 

Of the estimated 273,000 individuals in the U.S. who 
have spinal cord injury (SCI) [1],  54.1% have cervical 
injuries (e.g. C1-C7). These individuals are therefore unable 
to use their arms and hands to use a mouse and keyboard 
[2]; furthermore, those who have very high cervical injuries 
(e.g. C1-C3) may be ventilator dependent and unable to 
produce natural speech. The only communication modalities 
available clinically for these individuals with very high SCI 
are eye-tracking devices and mouth sticks. Brain controlled 
devices using electroencephalography (EEG) are also 
accessible, but are very slow and unreliable for practical use 
[3].  

However, individuals with even very high SCI have 
unimpaired facial musculature, because these muscles are 
innervated by cranial nerves. Here we describe a system that 
leverages this spared muscle function. We tested the ability 
of healthy individuals to use facial surface electromyography 
(sEMG) to control a cursor in order to select phonemes that 
were then synthesized with a concatenative speech 

 
Research supported by CELEST, an NSF Science of Learning Center  

(SBE-0354378) and NIDCD grants DC002852 and DC012651. 

M.J. Cler is with the Graduate Program for Neuroscience-

Computational Neuroscience, Boston University, Boston, MA 02215 USA 

(e-mail:  mcler@bu.edu).  

A. Nieto-Castanon is with the Department of Speech, Language, and 

Hearing  Sciences, Boston University, Boston, MA 02215 USA (e-mail: 

alfnie@gmail.com). 

F.H. Guenther is with the Departments of Speech, Language, and 

Hearing  Sciences and Biomedical Engineering, Boston University, Boston, 

MA 02215 USA (e-mail: guenther@bu.edu). 

C.E. Stepp is with the Departments of Speech, Language, and Hearing  

Sciences and Biomedical Engineering, Boston University, Boston, MA 

02215 USA (phone: 617-353-7487; fax: 617-353-5074; e-mail: 

cstepp@bu.edu) 

synthesizer. sEMG requires intact muscle control, but has a 
much higher signal to noise ratio than EEG [4].  

II. METHODS 

A. Participants 

Six healthy adults who reported no history of speech, 
language, or hearing disorders and were native speakers of 
American English participated. Participants had not engaged 
in previous sEMG research, nor were they familiar with 
phonemic spellers. The participants (3 male) had a mean age 
of 20.7 years (SD = 0.9). All participants completed written 
consent in compliance with the Boston University 
Institutional Review Board. 

B. Experimental Design 

All participants had one 90-minute training session. 
After the participant’s skin was cleaned with alcohol and 
then exfoliated with adhesive tape, five single differential 
sEMG sensors were placed on the surface of the skin. 
Electrodes were placed parallel to underlying muscle fibers 
(see Fig. 1 and Table I). Electrodes were placed to record 
activity of muscles that were activated during particular 
facial gestures. The sEMG signal was then mapped to a 
cursor movement (see Table I).  

Participants were all able isolate these facial gestures. 
Gestures were chosen to correspond with the movement of 
the cursor: when the users contracted muscles at the top of 
their face, the cursor moved up, and when they contracted 
muscles in the left cheek and mouth, the cursor moved left.  

Users were given a three-minute introduction and free 
use of the phonemic interface using a standard mouse, 
followed by a sequence of calibrations for the sEMG mouse, 
and 45 trials of interaction with the interface and the sEMG 
mouse. Each trial began with the presentation of one of 45 
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common American English words. Stimuli were presented 
both aurally and visually; auditory stimuli were generated 
with the interface offline and the visual stimuli was a 
phonemic spelling of the word (e.g. if the stimulus was 
“voice”, a participant heard the word synthesized by the 
interface and saw the word spelled phonemically: “v-oi-s”). 
After the stimulus was presented, users selected the given 
phonemes with the phonemic speller, using their sEMG 
signals to control the cursor. When participants finished 
selecting the phonemes, the selected phonemes were 
synthesized, giving auditory feedback to the user.  

TABLE I.  ELECTRODE PLACEMENT 

Electrode 

Number  

Electrode 

Placement 
Muscle Group 

Cursor 

Action 

1 Left of mouth 
Risorius and 

orbicularis oris 

Move left 

2 Right of mouth 
Risorius and 

orbicularis oris 

Move 

right 

3 Above eyebrow Frontalis Move up 

4 Chin Mentalis 
Move 

down 

5 
Side and slightly 

below eye 
Orbicularis oculi 

Click 

C. Phonemic Speller and Speech Synthesizer  

The speech synthesizer used in this study was originally 
developed for use on a touch screen computer by sliding a 
finger between phoneme "keys" that are laid out in a circular 
keyboard layout based roughly on articulatory features 
(constriction locations and degrees). The synthesizer was 
configured to start a new word each time the finger is placed 
on the screen at the location of a phoneme key. This 
phoneme acts the first phoneme in the word, and the 
remaining phonemes of the word are indicated by sliding the 
finger (without lifting it) to the subsequent phoneme keys. 
After all phonemes in the word are indicated in this manner, 
the finger is lifted off the tablet, at which point the word is 
synthesized via a proprietary concatenative synthesis process 
and played over the computer's speaker. The interface 
consisted of fourteen vowels and diphthongs, surrounded by 
twenty-four consonants. 

In the current study, touch screen control was replaced 
with an interface specifically designed for sEMG control, in 
which the user clicked on each phoneme individually and 
then clicked another button when ready for the program to 
synthesize the series of phonemes selected. 

D. Data Acquisition  

sEMG signals were pre-amplified and filtered with 
Bagnoli-2 EMG systems (Delsys, Boston, MA), which  were 
set to a gain of 1000 and included a band-pass filter with 
roll-off frequencies of 20 and 450 Hz. Simultaneous sEMG 
signals were digitally recorded with National Instruments 
hardware and custom Python software at 5000 Hz. The data 
was collected with a window size of 100 ms, over which the 
root mean square (RMS) was calculated. 

E. Calibration 

After users became familiar with the phonemic interface, 
the sEMG mouse system was calibrated. Users were asked 
to make each facial gesture twice (i.e., left left; right right; 
up up; down down; blink blink), until they were able to 
produce a clean calibration run with minimal muscle 
coactivation. The maximum RMS from each electrode 
during the calibration run was then used to calculate 
thresholds using a set of electrode-specific multipliers, 
determined in pilot testing. The multipliers were 0.3 for the 
left, right, and up electrodes, 0.5 for the down electrode, and 
0.7 for the blink electrode, and represented how much 
activation was required for the system to recognize muscle 
activation as indicating a deliberate gesture. For example, 
the participants were required to produce an activation that 
was at least 70% of the maximum blink RMS from their 
individual calibration in order for the system to register a 
blink. 

F. sEMG Mouse 

 The custom sEMG mouse was written in Python and 
allowed the user to move in any 360º direction by using 
facial gestures, in isolation or in combination.  

The RMS of the sEMG signals was calculated from each 
electrode every 100 ms and checked against thresholds. If 
the RMS from the blink electrode was higher than the blink 
threshold, the cursor was clicked to select a phoneme. 
Otherwise, the movement of the cursor was calculated with 
(1) and (2). The RMS values from the left, right, up, and 
down electrodes (RMSR, RMSL, RMSU, RMSD) were 
divided by thresholds from calibrations. This resultant ratio 
was then squared and used as the magnitude of the cursor 
movement in those four directions [5]. To convert these 
magnitudes to a change in x and y cursor position, the left 
movement was subtracted from the right and the up was 
subtracted from down, and these x and y direction values 
were multiplied by a scalar that was identical for all users 
(speed in (1) and (2)).  

 Δx = [(RMSR/thresholdR)
2
 - (RMSL/thresholdL)

2
]×speed  (1) 

 Δy= [(RMSD/thresholdD)
2
 - (RMSU/thresholdU)

2
]×speed  (2) 

G. Performance Measure 

In this experiment, performance was measured using 
information transfer rate (ITR). This value, calculated using 
Wolpaw’s method, represents both speed and accuracy [6]. 
ITRs were calculated for each trial using (3); in this 
equation, N is 38, the number of phonemic targets on the 
screen, and A is accuracy from 0 to 1. The output of this 
equation is bits per selection, which must then be converted 
to bits per minute by multiplying (3) by the selection rate in 
selections per minute.  

 bits / selection = log2(N) + A × log2(A) + (1 - A) ×  
log2((1 - A) / (N - 1))  (3) 

In this experiment, selection rate, in selections per 
minute was calculated in two ways. First, we calculated the 
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Figure 2. Mean information transfer rate measured in bits per minute. 

Error bars are 95% confidence intervals of the mean. Blue data show 

ITR calculated with direct phonemic selections per minute. Red data 

show ITR calculated with equivalent orthographic selections per 

minute. Asterisks show maximum trial ITR. 

number of selections, ranging from three to six phonemes, 
divided by the time the user took to make those selections. 
In order to benchmark the system to equivalent orthographic 
methods, we then recalculated selections per minute as the 
number of letters in the orthographical spelling of the word, 
divided by the time it took the user to spell the word 
phonemically.  

III. RESULTS 

Participants had mean phonemic ITRs between 46.8 and 
74.1 bits/min with a mean of 59.5 (SD = 9.8) (see Fig. 2 and 
Table II). In order to compare this system with orthographic 
systems, ITRs were also calculated with the equivalent 
number of selections required to spell the word 
orthographically. With this calculation, participants had 
mean ITRs ranging from 56.8 to 88.3 bits/min with a mean 

of 70.1 bits/min (SD = 12.3). 

TABLE II.  COMPARISONS TO OTHER SYSTEMS 

System 

ITR Range 

(bits/min) 

Example 

References 

Eye-tracking (includes predictive methods) 60-222 [7-10] 

Mechanical switch (e.g. mouth stick; 

includes predictive methods) 
96-198 [8] 

Other sEMG systems (continuous muscle 

control) 
5.4-51 [5, 11-13] 

Invasive BCIs 5.4-69 [14, 15] 

Non-invasive BCIs 1.8-24 [15-18] 

IV. DISCUSSION 

As anticipated, participants had mean ITRs that were 
much higher than non-invasive BCIs and other sEMG 
systems (see Table II). ITRs were also higher than or 
equivalent to invasive BCIs. ITRs in this study were 
comparable to many eye-tracking and mouth stick methods, 

including those that use prediction. sEMG may offer 
advantages over eye-tracking systems. For example, 
performance using eye-tracking systems is degraded with 
any head movement or changes in ambient lighting, and 
their use may cause fatigue [8].  

A. Benefits and Limitations of Phonemic Interface 

Most similar assistive devices use orthographic spellers 
rather than the phonemic interface presented here. Using 
phonemes rather than letters has the potential to allow 
greater personality and expression as well as different 
accents. Use of phonemic output could always be combined 
with pre-packaged speech to text software (e.g., Dragon) to 
compose text messages. However, using an orthographic 
speller directly requires user literacy, which can be 
problematic in individuals with severe motor impairment 
[19]. Conversely, by allowing users to combine sequences of 
phonemes, novel conversational items can be generated 
without that user having knowledge of orthographic spelling. 

Further, many words have fewer phonemes than letters, 
which reduces the number of selections that must be made 
and therefore the time it takes to communicate the same 
amount of information (e.g. VOICE becomes V-OI-S). The 
stimuli in this study were all common English five-letter 
words. When converted to the phoneme system used in this 
study, the number of required selections ranged from 3 to 6 
with a mean of 4.3 selections per word (SD = 0.8). Fifty-
seven percent of the words took fewer than five selections to 
spell phonetically, and 98% took fewer than six selections. 

The phonemes used in this interface had an organization 
based roughly on articulatory features, but finding the 
phonemes was not nearly as quick as one would expect 
finding letters in an alphabetic layout or the common 
QWERTY keyboard layout would be. Just as individuals 
must learn where all the letters are on a QWERTY keyboard 
when they learn to type, so would users of these systems. In 
addition, participants in this study were not required to 
translate their desired word into a phonemic spelling, but 
were rather prompted with a sequence of phonemes to 
select. Extra training time would also be expected in order 
for users to fluently map their intended words to the 
phonemes used in this interface. 

B. Future Improvements  

In the future, ITRs from this system could be improved 
by a variety of methods. First, as noted above, end-users of 
this system will require training in order to maximize their 
ITRs. Other studies show that training can increase ITRs by 
almost fifty percent [9].  Training on this system would 
include motor learning to use the sEMG mouse, becoming 
more familiar with the placement of the phonemes within 
the interface, and learning to translate their intended words 
into the set of 38 phonemes available in this interface (not 
required for participants of this study). Further study is 
needed to determine optimal training protocols and the 
potential effects of longer such interaction on user fatigue.  

Additionally, the described sEMG mouse has a relatively 
simple algorithm and relies on the users to learn to control 
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their facial gestures. For users with motor disorders, a more 
sophisticated algorithm may be required. Ideally, users 
would be asked to make any facial gesture that they felt 
intuitively corresponded to left, right, up, down, and click 
actions. Then a machine-learning algorithm would be 
trained to recognize these gestures and translate them to the 
appropriate cursor actions. 

Finally, many similar systems employ some kind of 
predictive models. The most basic way to include prediction 
with this system would be to use a phonemic dictionary and 
predict which phonemes are most likely to be chosen, given 
last selected phoneme. Then the predicted phoneme or set of 
phonemes could be highlighted or displayed on the screen 
separately, much like cellular phone text prediction. A 
machine-learning algorithm could also be implemented here 
to use the end-user’s history rather than a dictionary. Adding 
even a basic predictive model could improve the final ITRs 
by as much as 100% [20, 21]. 

V. CONCLUSIONS 

Individuals with high spinal cord injuries may require 
human-machine interfaces to communicate. Individuals with 
SCI have intact facial musculature and control, as the 
required muscles are innervated by cranial nerves. In this 
paper, we presented a system using surface 
electromyography recorded from facial muscles to control a 
phonemic interface and voice synthesizer. 

Healthy participants were able to interact with the 
phonemic interface by using five facial gestures to control 
an onscreen cursor. To calculate information transfer rate, 
we used Wolpaw’s method and found that users had mean 
ITRs of 59.5 bits/min when calculating each selected 
phoneme as one selection. ITRs were also calculated using 
the equivalent number of letters needed to spell the word 
orthographically as the number of selections made. With this 
method, users had a mean ITR of 70.1 bits/min. ITRs 
calculated both ways were higher than non-invasive BCIs, 
other sEMG systems, and invasive BCIs. ITRs were 
comparable to eye-tracking systems that use prediction. 
Future development to add predictive methods to this 
system are anticipated to increase ITRs significantly.  
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