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Abstract— Approximately 50 million people in the world 

suffer from epileptic seizures.  Reliable early seizure detection 

could bring significantly beneficial therapeutic alternatives.  In 

recent decades, most approaches have relied on scalp EEG and 

intracranial EEG signals, but practical early detection for 

closed-loop seizure control remains challenging.  In this study, 

we present preliminary analyses of an early detection approach 

based on intracortical neuronal multiunit activity (MUA) 

recorded from a 96-microelectrode array (MEA).  The approach 

consists of (1) MUA detection from broadband field potentials 

recorded at 30 kHz by the MEA; (2) MUA feature extraction; (3) 

cost-sensitive support vector machine classification of ictal and 

interictal samples; and (4) Kalman-filtering postprocessing.  

MUA was here defined as the number of threshold crossing 

(spike counts) applied to the 300 Hz – 6 kHz bandpass filtered 

local field potentials in 0.1 sec time windows.  MUA features 

explored in this study included the mean, variance, and 

Fano-factor, computed across the MEA channels.  In addition, 

we used the leading eigenvalues of MUA spatial and temporal 

correlation matrices computed in 1-sec moving time windows.  

We assessed the seizure detection approach on out-of-sample 

data from one-participant recordings with six seizure events and 

4.73-hour interictal data.  The proposed MUA-based detection 

approach yielded a 100% sensitivity (6/6) and no false positives, 

and a latency of 4.17 ± 2.27 sec (mean ± SD) with respect to 
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ECoG-identified seizure onsets.  These preliminary results 

indicate intracortical MUA may be a useful signal for early 

detection of human epileptic seizures. 

I. INTRODUCTION 

Epilepsy is one of the most common neurological 
disorders, affecting approximately 1% of the entire population 
[1, 2].  It is characterized by seemingly unpredictable 
recurrent seizures that have a significant negative impact on 
autonomy and quality of life.  Reliable early seizure detection, 
as well as seizure prediction, could bring tremendous 
therapeutic benefits to people with epilepsy.  Many attempts 
have been made to achieve reliable early detection, most of 
them using scalp electroencephalogram (EEG) and 
intracranial EEG (iEEG) [3], but their practical efficacy 
remains variable at best.   

In this study, we explore the feasibility of an early seizure 
detection approach based on intracortical MUA, recorded 
from a 4x4-mm2 96-microelectrode array on a platform 
(96-MEA; the NeuroPort System, Blackrock Microsystems, 
Salt Lake City, UT USA) [4, 5]. 

II. METHODS 

A. Data Description and Approach Outline 

Approval of this study was granted by Institutional Review 
Boards at Partners Healthcare (Massachusetts General and 
Brigham and Women’s Hospitals) and Brown University, and 
a participant was enrolled after informed consent.  The 
participant was a 52-year-old female and had a history of 
epilepsy with complex partial seizures and occasional 
secondary generalized seizures.  Along with standard 
electrocorticography (ECoG) electrodes to monitor her brain 
state for clinical purposes, a 96-MEA was implanted in her left 
middle temporal gyrus.  The distance from the MEA to the 
nearest ECoG electrode that captured seizure onsets was 
approximately 2 cm.  Refer to [6] for more details. 

The framework used in this study, outlined in Figure 1, 
was composed of (1) MUA extraction from broadband 
intracortical neural signals, (2) MUA feature extraction,  

 

Figure 1.  Outline of the framework for early detection of human epileptic 

seizures using intracortical multiunit activity. 
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Figure 2.  MUA extraction.  (a) MUA extraction steps.  (b) Resulting signals 

from each step in (a). The red line in the middle plot indicates the threshold. 

We set the threshold to -3 SD of the BPF signals.  In this example, although 

the firing rate of the unit with large-amplitude action potentials decreases 

during the initial stages of the seizure, MUA increases throughout. Seizure 

onset at time zero. 

(3) classification using cost-sensitive support vector machines 
(SVMs), and (4) postprocessing with Kalman-filtering.  The 
approach was tested on out-of-sample data, with double 
cross-validation [7, 8]. Data from one participant, including 

six epileptic seizure events and 4.73-hour of interictal 
(between seizures, presumably normal) time, were used.  
Preictal (5-min period preceding a seizure event) and postictal 
(2-hour period after a seizure) time segments were not 
included in the interictal data.  

B. MUA Extraction 

Intracortical neural signals were recorded broadband (0.3 
Hz – 7.5 kHz) from a 96-MEA and sampled at 30 kHz.  To 
extract MUA from broadband signals, we used bandpass 
filtering (300 Hz – 6 kHz) [9], followed by counting threshold 
crossings in 0.1-sec time bins (see Figure 2).  The threshold 
was defined as -3 SD (standard deviations) of clipped BPF 
signals (BPF signals outside ±10 SD were identified as 
artifacts and clipped).  Time-varying threshold values were 
computed in 10-sec moving time windows.  Threshold values 
in 10-sec windows were replaced with ones in the preceding 
window when the corresponding BPF magnitude square 
(power) was above 3 SD.  We further smoothed the threshold 
values in a time-causal manner by applying a 5-min moving 
average. 

 

 
Figure 3.  MUA feature extraction.  (a) MUA time trace in L recorded channels.  Seizure onset at time zero. (b) 5 measures are computed in a 1-sec moving time 

window with 0.5-sec overlap between consecutive windows.  (c) Final MUA features obtained by concatenating the 5 measures in time-causal 5-consecutive 

windows.  (d) Binary labeling for classification. 
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C. MUA Feature Extraction: Across-Channel Mean, 

Variance, Fano Factor, and Leading Eigenvalues of Spatial 

and Temporal Correlation Matrices 

Visual examinations on MUA time traces over ictal (with a 
seizure) periods, as shown in Figure 3 (a), pointed out that 
certain MUA measures computed across channels may 
capture sudden and inhomogeneous changes at or right after 
seizure onsets.  We computed the mean, variance, and Fano 
factor of MUA across all recorded channels, and averaged 
them in 1-sec time windows with 0.5-sec overlap.  In addition, 
we explored spatial and temporal correlation matrices of 
MUA in 1-sec windows, using Spearman’s rank correlation 
coefficients. Leading eigenvalues of spatial and temporal 
correlation matrices may capture early ictal changes in spatial 
and temporal statistical dependence of MUA in 1-sec 
windows (see Figure 3 (b)).   As a final step, the mean, 
variance, Fano factor and the leading eigenvalues, computed 
on causal 5-consecutive 1-sec moving time windows, were 
concatenated to form a single MUA-feature vector, as 
comparable to [10, 11].  MUA features were normalized into 
z-scores, and binary-labeled into either the interictal or ictal 
group. 

D. Cost-Sensitive SVM Classification 

Because ictal samples were much fewer than interictal 
ones, as is typical in seizure data, we used cost-sensitive 
support vector machines (SVMs, software package LIBSVM 
[12])  to handle this data imbalance [7, 8]. The radial basis 
function (RBF) kernel was used.  The cost-sensitive parameter, 
determined as the ratio between ictal and interictal samples 
[13], corresponded to 96.4 in our dataset. 

SVMs with the RBF kernel are vulnerable to the 
over-fitting problem [8].  To address this issue, we used a 
double cross-validation scheme [7, 8].  Our double 
cross-validation scheme included 5-fold cross-validation for 
in-sample optimization with a training dataset and 
leave-one-seizure-out cross-validation [10] for out-of-sample 
evaluation with a test dataset.  We used the F-score as a single 
measure to evaluate optimality of classification mapping in 
in-sample optimization as well as to take the imbalanced 
condition into account [14] (see Figure 4). 

E. Postprocessing with Kalman Filtering 

Cost-sensitive SVM classification, by penalizing more 
false negatives more than false positives (FPs), may 
sporadically produce undesired FPs.  To address this issue, we 
applied a postprocessing step consisting of Kalman filtering of 
SVM decision values (real number outputs).  The state-space 
model used in the Kalman filter was comparable to one in [7].  
We set the ratio between the variances of the process and 
observation noise to 2-10. 

III. RESULTS 

We evaluated the proposed MUA-based approach for 
early seizure detection in one-participant dataset that included 
6 seizures and 4.73-hour interictal data.  We assessed our 
framework in two ways: event-wise, i.e. a seizure occurrence 

was considered one event; and sample-wise, i.e. a single 
feature was classified into an ictal or interictal class.  In 
event-wise detection rate, the framework produced 100% 
sensitivity (6/6), no FP, and a 4.17 ± 2.27 sec (mean ± SD) 
detection latency with respect to ECoG-identified seizure 
onsets.  TABLE I  presented the sample-wise detection rate 
before and after postprocessing, including confusion matrices, 
sensitivity, specificity, and positive and negative predictive 
numbers. 

IV. DISCUSSION 

MUA recorded via microelectrode arrays results from a 
mixture of multiple neurons spiking near each electrode [5].  
There are various different ways to extract MUA from MEA 
recordings [9].  We defined MUA as the number of threshold 
crossings in 0.1-sec time bins applied to the bandpass filtered 
broadband recorded field potentials.  Different MUA 
definitions may result in different seizure detection rates. 

 

Figure 4.  In-sample optimization with F-score via 5-fold cross-validation 

with a training dataset.  A range of costs (C’s, penalties) and γ’s in the RBF 

kernel (proportional to a default value in LIBSVM) defines a grid where the 

optimal parameter pair, i.e. the pair that maximizes the F-score, is chosen.  In 

this example, the pair of C = 21 and γ = 22 was selected (maximum F-score = 

0.93).  The SVM is trained using the optimal pair of parameters with the 

training dataset, and then evaluated on an untouched test dataset. 

TABLE I.  SAMPLE-WISE DETECTION RATE BEFORE AND AFTER 

POSTPROCESSING 

  Actual ictal Actual interictal   

Classified as 
ictal 

291 21 
Pos. pred. value  
= 0.933 

Classified as 
interictal 

69 34023 
Neg. pred. value 
= 0.998 

  Sens. = 0.808 Spec. = 0.999   

(a) Before postprocessing 

  Actual ictal Actual interictal   

Classified as 
ictal 

279 0 
Pos. pred. value  
= 1.000 

Classified as 
interictal 

81 34044 
Neg. pred. value 
= 0.998 

  Sens. = 0.775 Spec. = 1.000   

(b) After postprocessing 
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Our preliminary analyses indicate that multi-channel 
intracortical MUA may be useful for early seizure detection. 
We plan to extend our analyses by including several 
participants and various types of epileptic seizures.  In 
addition, we plan to explore early seizure detection 
approaches that combine MUA with various other types of 
neural signals, including single-unit activity and local field 
potentials. 
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