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Abstract - EEG based monitoring for the purpose of assessing 

a patient's neurological status is conspicuous and uncomfortable 

at best. We are analyzing a set of physiological signals that may 

be monitored comfortably by a wrist worn device. We have found 

that these signals and machine based classification allows us to 

accurately discriminate among four stress states of individuals. 

Further, we have found a clear change in these signals during 

the 70 minutes preceding a single convulsive epileptic seizure. 

Our classification accuracy on all data has been greater than 

90% to date. 

I. INTRODUCTION 

A. Background 

The proliferation of wearable sensors allows effective 
and inexpensive monitoring of situations and ailments that 
could previously be monitored only at great expense and at 
the discomfort of the subject. Assessment of a person's 
neurological state, however, still requires the use of either 
surface or implanted electrodes. Such EEG based monitoring  
is conspicuous and uncomfortable at best. We are studying 
the feasibility of gathering information about the 
neurological state of an individual based on resultant 
physiological changes that can be effectively and 
comfortably monitored on an ongoing basis. 

We looked for physiological metrics that can be 
monitored by a device resembling a wristwatch. Unlike a 
device using electrodes attached to the head, such a device 
would be unobtrusive, comfortable and easy to wear. Heart 
rate, skin temperature and wrist movement can all be easily 
monitored here. In addition, electrodermal activity, which is 
a function of changes in sympathetic neural activity and is 
also known as skin conductance, can be measured at the 
wrist [1].  Arterial oxygenation can be measured by a wrist 
worn device using a finger cuff. 

One possible application of our platform is seizure 
detection and/or prediction. In the late 1950s, John 
VanBuren studied seizures and the physiological changes 
that accompany them [2], [3]. In 1970, S. Viglione's group 
made the first serious effort at seizure prediction. Other 
research groups followed, but none were successful [4].  In 
2002, the First International Workshop on Seizure Prediction 
was held in Bonn, Germany [5]. Other workshops were held 
at approximately two year intervals, the most recent, IWSP6, 
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in November of 2013. The goal of these workshops was a 
collaborative effort to make seizure prediction a reality. 
Seizure prediction contests were held in the third and fourth 
workshops, and workshop participants held high hopes for 
success [6], [7]. 

Participants in IWSP6 [8] were excited about progress 
made by Neurovista. This group took a slightly different tact. 
Instead of trying to predict specific seizures in time to warn 
the patient, they provided feedback which indicated a high, 
medium or low probability of a seizure in the near future. 
Average alert time prior to a seizure was 114 minutes. 
Neurovista's efforts used EEG analysis and brain implants 
[9]. If sufficient neurological changes occur to allow time 
periods of high seizure probability to be determined by 
reading EEG, perhaps parallel changes in physiological 
metrics also occur. If so, a wearable device can be developed 
to provide warning to patients without requiring them to 
undergo brain surgery.  

B. Motivation and Contribution 

The next question, then, is whether our platform is 
monitoring signals that might actually change prior to a 
seizure. Our study of the literature indicates that we are. A 
number of researchers  [10], [11] and [12] have observed 
extreme heart rate (HR) changes at the beginning of some 
types of seizures. At least two researchers [13] and [14] have 
found indications that arterial oxygen level (SpO2) changes 
may occur before seizure onset. In conjunction with physical 
motion (accelerometry data - ACCEL), changes in 
electrodermal activity (EDA) have been found to effectively 
indicate the onset of  convulsive seizures [15]. Finally, the 
authors of a survey paper published last year commented that 
no one has yet investigated temperature (TEMP) as a 
possible signal for detecting seizures [16]. Consequently, we 
believe our platform is monitoring a set of metrics that have 
an excellent possibility of providing insight into the 
neurological changes of a person wearing it, at least if the 
changes precede a seizure. 

II. STRESS ASSESSMENT METHODOLOGY 

A. Physiological Changes Caused by Normal Stresses 

Fig. 1 provides a flow chart for the processing of data 
from our "Healthy Subject" experiment. We collected data 
using two off-the-shelf components: an Affectiva Q Curve 
[17], which monitors EDA, TEMP, and ACCEL; and a 
Nonin 3150 Wireless WristOx2 Oximeter [18], which 
monitors HR and SpO2.  

To be ready for practical use in case a wrist band or 
finger cuff came loose, data from our two devices was 
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checked for validity. If the Affectiva Q  electrodes lose 
contact with the skin, the EDA reading will drop out. We 
considered using a low pass filter on the EDA data to 
eliminate possible dropouts, but finally decided that we 
would remove more legitimate variations in the data than 
dropouts. TEMP and ACCEL data were not affected by 
temporary loss of contact between electrodes and skin. 
Consequently, all data recorded by the Affectiva Q was 
treated as valid. 

The Nonin WristOx2, on the other hand, flags invalid 
data from the finger cuff. Dropouts during the experiment on 
normal stress were infrequent and brief (less than 5 samples 
at a time). As neither the HR nor the SpO2 level were 
changing rapidly during these tests, we used the last good 
data point to replace dropouts. 

The data from each of 20 subjects was separated into 
four classes: relaxation, physical stress, cognitive stress and 
emotional stress. Because we were dealing with a small 
amount of data (less than an hour) from each of our test 
subjects, the data in each class was divided into (short) six 
second windows. Like other approaches that deal with data 
streams, we considered a sliding window with 50% overlap 
to overcome sensitivity of exact size and position of 
windows [19]. The data in each window was analyzed for 
four basic statistical features requiring a minimum of 
computational power: mean, maximum, minimum, and the 
change from beginning to end of the window. In addition, a 
frequency analysis was done on the accelerometer data by 
counting the number of movements per window. As our 
ultimate goal is to create a real-time, wearable system, 
computation must be kept to a minimum to minimize the 
processor power requirements.  

 
 

Fig. 1: Normal Stress Data Flow 

To verify that all of our sensors were useful for 
distinguishing our four classes of activities, WEKA was used 
to perform a best first correlation based feature selection 
(CFS) of the most useful features from each of our 20 data 
sets. As the feature selection varied from one data set to the 
next, we continue to consider all the sensors of our current 
platform to be necessary [20]. 

 To classify each data set, we used two well-known 
machine learning techniques: 1) k-nearest neighbor (kNN) 
with 3 neighbors, and 2) neural networks. KNN is an 
analytically tractable and effective method for classifying 
noisy training data. It classifies each new instance X by 
finding the training instances <Xi, Yi> with the minimum 
distance to newcomer instance X  according to the Euclidian 
distance: 

     ||X-Xi||=[(∑k(Xk-Xik)
2
]

1/2
,          (1) 

where k in (1) is the index of the k
th

 feature of any data 
instance.  

Neural networks are robust, fault tolerant systems that are 
suitable for classifying noisy and incomplete patterns. 
Further, they handle medical diagnosis problems well [21].  
We used a 3-layer feed forward neural network with one 
input for each metric fed into the classifier and one output 
for each of our four classes. A network with one hidden layer 
of 4 neurons provided optimal performance. The learning 
rate and momentum are 0.3 and 0.2, respectively. Fig. 2 
shows the structure of our neural network [22]. 

 

 

 

 

 

 

 

 

 

  

 

Fig. 2: Neural Network 

As we expected, our algorithms were able to classify data 
windows into the four different activity classes most 
accurately when given the most information. However, the 
neural network algorithm ran as much as several minutes 
faster when given less data to process. 

B. Physiological Changes Caused by Seizure 

Rather than attempting to deal with the HR and SpO2 
dropouts in the entire data file, we decided to handle them 
window by window. Because we are now dealing with 
several hours of data at a time, we used longer, 30 second 
windows to analyze the data, but kept the 50% overlap. After 
the data was divided into windows, each window was 
scanned for HR and SpO2 dropouts. Valid data was 
extracted and statistical analysis  performed on it. If there 
was no valid data in the window, a flag was returned. 

The following statistical features were extracted from 
each window of the data: maximum, minimum, mean, mode 
and standard deviation. The resulting metrics were used to 
classify the data into preseizure and nonseizure classes using 
the same k-nearest neighbor algorithm used on the normal 
stress data. Again, we were looking for features that require 
minimal processing power in anticipation of designing a real- 
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time wearable device. Fig. 3 shows the procedure we used to  
analyze this data.  

 

Fig. 3: Procedure for Analyzing Seizure Data 

III. EXPERIMENTAL RESULTS 

A.  Classification for Normal Stresses 

In our previous work [23], we sought to determine 
whether our chosen metrics provided sufficient information 
to distinguish common types of stresses. Our success in this 
endeavor lends support to our belief that we can gain insight 
into a person's neurological state through his physiological 
signals.  

Our “Healthy Response to Stress” test asked volunteers 
to alternately relax and perform three predesigned tasks. 
During the four relaxation sessions the subject was asked to 
sit quietly and listen to soothing music. The objective of 
these sessions was to establish a baseline for the 
physiological metrics we were measuring. That way we 
could see how each metric changed during the three tasks 
and what the sensitivity and specificity of each metric was.  

The data from one volunteer is shown in Fig. 4. Table 1 
shows the confusion matrices for this data set. Both of our 
algorithms were able to classify the data from all 20 subjects 
with greater than 90% accuracy. Fig. 5 summarizes these 
results. The Subset Eval selection category in Fig. 5 was the 
CFS choice of metrics for each subject. The 7 features most 
commonly selected by CFS for the individual data sets (z-
mean, z-max, z-min, y-mean, x-mean, temp-mean and eda-
mean) were used to analyze all 20 data sets as well. Fig. 5 
shows those results as the Majority selection. 

B. Classification for Seizures 

Collection of seizure data is being done under an IRB 
protocol at an Epilepsy Monitoring Unit (EMU) in Dallas, 
TX. Electroencephalography (EEG) seizure annotation has 
been done by our medical consultant using NeuroWork 
software [24]. Our devices are time synced to the EEG 
equipment so that we are certain of seizure onset and offset 
times.  

We have six hours of data from one epileptic patient who 
suffered a dyscognitive seizure with secondarily generalized 
tonic-clonic seizure (also known as a complex partial with 
secondarily generalized tonic-clonic seizure) while wearing 
our devices. The graph is shown in Fig. 6. The vertical lines 
show the three time periods of  interest to us: 

 

Fig. 4: Data from One Healthy Subject 

 

Fig. 5: 20 Subject Classification Using (a) kNN, (b) Neural Network 

 

• Period 1: precedes the seizure by more than 70 minutes 

• Period 2: 70 minutes immediately preceding the seizure 

• Period 3: includes and follows the seizure 

Visual observation of the graph in Fig. 6 shows definite 
changes during the 70 minutes prior to the seizure onset. Use 
of our kNN algorithm confirmed that Period 2 is distinctly 
different from Periods 1 and 3, as shown by the confusion 
matrix in Table 2. Significantly, no preseizure windows have 
been categorized incorrectly. (Note: Periods 1 and 3 are both 
classified as "Other" in Table 2.) 

IV. CONCLUSIONS 

We were excited by the discovery that our classification 
algorithms were able to distinguish, with great accuracy, the 
type of stress a person was under based on statistical data 
from our five sensors. To the best of our knowledge, we are 
the first researchers since John M. Van Buren (late 1950s) to 
look at this many extra-cerebral metrics. Further, we are in a 
better position to analyze the data we are collecting because  
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Fig. 6: Data from One EMU Patient 

TABLE 2: Confusion Matrix for Fig. 6 Data (Percent) 

Class Other Preseizure 

Other 100 2.1 

Preseizure 0 97.9 

Sensitivity 100 97.9 

Specificity 97.9 100 

Precision 99.4 100 

Accuracy 99.5 

 

Van Buren lacked the technology to 1) monitor patients with 

minimal disruption to their comfort and 2) perform the signal 

processing and data mining that we are able to do. The 

extreme heart rate change at the beginning of the seizure is 

similar to that observed by other researchers. The large 

increase in EDA response at the beginning of his seizure is 

also expected for a convulsive seizure. Loss of HR and SpO2 

data during the clonic phase of a seizure was expected, and 

underscores the importance of replacing our current device 

with a reflectance oximeter as soon as possible. The almost 

complete lack of motion during Period 2 gives it a calm 

before the storm feel. Our discovery of a preictal footprint 

prior to this seizure leads us to believe that we have selected 

a set of sensors that will enable us to recognize preictal 

footprints prior to other epileptic seizures as well. If a 

patient's preictal footprint appears in similar form before 

each seizure, we have a realistic possibility of predicting 

seizures where others have failed. We need data from many  

 

more patients and seizures before we can draw definite 

conclusions. 
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TABLE 1: Confusion Matrix for Fig. 4 -Data (Percent) 

 kNN Classifier Neural Network Classifier 

Class Relaxation 
Physical 

Stress 

Emotional 

Stress 

Cognitive 

Stress 
Relaxation 

Physical 

Stress 

Emotional 

Stress 

Cognitive 

Stress 

Relaxation 98.0 0 5.9 0.9 98.7 0 0.8 0.9 

Physical Stress 0 99.1 0 0 0 99.1 0.8 0 

Emotional Stress 1.0 0.9 94.1 0.9 1.0 0.9 98.4 0 

Cognitive Stress 1.0 0 0 98.2 0.3 0 0 99.1 

Sensitivity 98.0 99.1 94.1 98.2 98.7 99.1 98.4 99.1 

Specificity 97.1 96.8 98.4 97.1 98.9 98.7 99.0 98.7 

Precision 97.7 100 95.5 96.6 99.5 99.1 96.2 99.1 

Accuracy 97.5 98.8 
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