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Abstract — In many critical care units, default patient 
monitor alarm settings are not fine-tuned to the vital signs of the 
patient population. As a consequence there are many alarms. A 
large fraction of the alarms are not clinically actionable, thus 
contributing to alarm fatigue. Recent attention to this 
phenomenon has resulted in attempts in many institutions to 
decrease the overall alarm load of clinicians by altering the 
trigger thresholds for monitored parameters. Typically, new 
alarm settings are defined based on clinical knowledge and 
patient population norms and tried empirically on new patients 
without quantitative knowledge about the potential impact of 
these new settings. We introduce alarm regeneration as a 
method to estimate the alarm rate of new alarm settings using 
recorded patient monitor data. This method enables evaluation 
of several alarm setting scenarios prior to using these settings in 
the clinical setting. An expression for the alarm rate variance is 
derived for the calculation of statistical confidence intervals on 
the results. 

I. INTRODUCTION 

In environments where there are a large number of non-
actionable alarms, hospital staff is at risk for developing 
alarm fatigue. Alarm fatigue can be thought of as a type of 
cognitive de-sensitization. As a result of this desensitization 
clinicians may not respond appropriately to critical device 
alarms. In one setting more than 100 alarms per patient per 
day were noted emanating from patient monitors alone.  
Among this large volume of alarms, as many as 80 – 99% 
have been identified as not clinically actionable [1]. This 
combination of high alarm rates and few actionable alarms 
has been found across a wide range of care settings, including 
the Intensive Care Unit (ICU) [2], Progressive Care Unit 
(PCU) [3] and Medical/Surgical floors [4]. 

Alarm fatigue may affect patient safety, because 
important clinical events may be missed. The Joint 
Commission has linked 98 reported sentinel events to alarms 
[5]. Moreover, the noise level may reduce the quality of sleep 
for patients, thus slowing the healing process. To stimulate 
improvements, the Joint Commission has published a 
national patient safety goal on Alarm Management [6]. 

There are several methods to address alarm fatigue. Some 
include improvements of work flow. For example, proper 

 

Stijn de Waele is with Philips Research North America, Briarcliff Manor, 
NY 10510, USA. Phone: 914 945 6039; email: stijn.de.waele@philips.com  

Larry Nielsen and Joseph Frassica are with Philips Healthcare, Andover, 
MA 01810, USA.  

skin preparation of ECG electrodes improves the quality of 
the ECG signal, and thus reduces alarms caused by artifacts 
[7]. A second method which bears great promise for the 
longer term is the introduction of new advanced alarm-
generating algorithms [8][9]. In this paper, we focus on 
another method to reduce the rate of clinically inactionable 
alarms by adjustment of the default alarm settings in patient 
monitors. Several studies have shown the potential to reduce 
the alarm rate by the adjustment of alarm settings [3][10]. 

We introduce a technology to support the introduction of 
new default alarm settings by estimating the alarm rate for 
new settings using recorded vital signs, alarms and patient 
information. This allows for estimation of the alarm rate for a 
specific patient population in a selected unit.  

An accurate comparison of different settings is enabled 
by applying them to the vital signs of a single patient 
population, because the variability introduced by applying 
different settings to a new population is eliminated. 

Alarm regeneration with new settings is discussed in 
section II; section III describes the data collection system. 
The estimator for the alarm rate and its confidence interval 
are derived in section IV. Illustrative results of alarm 
regeneration applied to the Multiparameter Intelligent 
Monitoring in Intensive Care (MIMIC) II database [11] are 
given in section V. 

II. ALARM REGENERATION 

With alarm regeneration, alarms corresponding to given 
alarm parameter settings are generated by applying the alarm 
algorithm with these settings to continuously recorded vital 
signs. The sampling frequency must be sufficient to allow for 
accurate application of the algorithm.  The resulting alarms 
are referred to as generated alarms. Conversely, recorded 
alarms are alarms as they actually occurred during the data 
collection.  

Alarm regeneration delivers an indication of expected 
alarm rate with new settings before applying them to new 
patients. Also, it allows for a quick review of several 
proposed alarm settings. 

In the context of alarm regeneration, it is useful to 
categorize alarms by the way they can be configured, as 
follows: 

 Threshold alarms: A vital signs exceeds a threshold 

value L, e.g. **SpO2 94<96. Threshold alarms 
typically are the majority of occurring alarms.  
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 Tunable alarms: A parameter p exceeds a threshold P, 
where the parameter is not a vital sign, 

e.g. ***Apnea 0:21. In this example, the tunable 
parameter is the apnea duration threshold. The apnea 
alarm is the major tunable alarm. It requires the 
respiratory waveform signal for accurate regeneration. 

 On/off alarms: The algorithm has no user-adjustable 

parameters, e.g.: *PAIR PVC. Under the condition that 
an on/off alarm was ‘on’ during the data collection, 
alarm rate estimation for new settings is trivial for this 
type of alarms; the new setting ‘off’ simply means that 
the contribution of this alarm to the alarm rate is zero. 

Alarms may include the following filtering mechanisms 
to reduce the alarm rate: 

 Delay: Suppress the alarm if it lasts less than D seconds. 

 Inhibition: Suppress the alarm if there was an alarm of 
the same type in the last I seconds. 

Given the high prevalence of threshold alarms, and the 
trivial nature of alarm rate estimation for on/off alarms, the 
remainder of this paper will focus on threshold alarms. 

To evaluate the performance of a new default alarm 
setting, the alarm algorithm is applied to all patients using 
this new setting. More complex alarm setting scenarios can 
be defined. For example, using recorded alarm setting data, a 
scenario can be defined where the default values that were 
active during the recording are replaced by new defaults, but 
any modifications made during the recording are maintained.  

If only recorded alarms are available, approximate alarm 
regeneration can be performed by applying new thresholds to 
the extremum present in the alarm text, e.g. 94 in the alarm 

text **SpO2 94<96. A characteristic of this technique is 
that the results show the combination effect of vital signs 
data, and thresholds set during the recording. This 
approximation works well for pure threshold alarms, i.e. 
threshold alarms which do not involve alarm filtering (delay 
or inhibition), but can lead to poor results if filtering is 
present.  Application of new thresholds to the extremum 
present in the alarm text can also be used for alarm 
regeneration of the apnea alarm, in the absence of waveform 
data. 

III. DATA COLLECTION 

To enable alarm regeneration as described above, the 
following data is -collected during a data collection period for 
all beds in the units of interest: 

 Patient monitor alarms 
Alarm start time and alarm message. An example alarm 

text is ***TACHY 147>140, which can be used to 

derive severity (***Critical), originating modality 

(TACHYHeart rate), the alarm threshold (140) and the 

extreme value (147). The extreme value must be taken 
over the entire duration of the alarm. 

 Vital signs 
vital signs sampled at a 1 second sampling rate 

 Basic encounter information 
used to associate alarms and vital signs to a 
patient/bed/unit 

The size of the data set can be expressed by the number of 
patient days. A typical size is 1500 patient days, obtained 
during a 15 day data collection period for 100 beds. 

A dedicated recording PC system has been developed to 
simultaneously collect this information from a large number 
of Philips patient monitors. The current system can handle up 
to 128 beds, and can be expanded to handle up to 1000 beds. 
This system is based on the Philips IntelliVue Information 
Center (PIIC) iX Mobility server [12], which is installed 
temporarily in the hospital site during the data collection 
period. The data is stored in a MariaDB database [13]. 

IV. ALARM RATE ESTIMATION 

A. Definition 

The mean alarm rate is defined as the expectation of the 
alarm count c generated by a single patient divided by a time 
interval t: 
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], (1) 

With r is given in counts/patient/day. To arrive at the 
alarm rate as experienced by a clinician, the rate is multiplied 
by the number of patients under his care. When partitioning 
the time interval in N patient encounters, each with their 
individual alarm rate ri and encounter duration (length of 
stay) di, the mean alarm rate can be estimated as:   

  ̂  
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, (2) 

Please note that this expression is in terms of the alert 
count ci i.e. not normalized to an alarm rate. To express the 
alert rate in the encounter alert rate, the rate must be weighted 
proportionally by the encounter duration: 
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where   is the average encounter duration. The practical 
interpretation of the weight factor    ⁄  is that reducing false 
alarm rate for a patient with a combination of a high alarm 
rate and a long stay results in the greatest reduction of alarm 
rate. Computationally, it means that the rate estimate is not 
equal to the normal (unweighted) average of the rate per 
encounter. The current definition of the alarm rate is 
motivated by the fact that it directly relates to the average rate 
as experienced by a clinician. 

B. Confidence interval 

For the calculation of the confidence interval, we assume 
that the estimate for the mean alarm rate  ̂ has a Gaussian 
distribution. This is motivated by the fact that  ̂ is an average 
of a large number of stochastic variables with a similar 
distribution. The distribution of this type of variable tends to 
a Gaussian distribution according to the central limit theorem 
[14, p. 194]. Assuming this distribution, the 95% confidence 
interval for  ̂ is given by   ̂       ̂  ̂       ̂ , where  ̂ is 
the estimated standard deviation, calculated as the square root 

of the estimated variance  ̂. 

A method for estimating the variance of an estimated 
mean is to divide the data into partitions [15]. Considering 
each partition as a sample, the variance is now derived from 
the sample mean. All encounters are concatenated on the time 
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axis. The time axis is split into equal partitions of length tσ. 
The alarm rate estimate within partition   is denoted      , the 

number of partitions is M. The rate estimate  ̂ is the average 
rate over all partitions: 

  ̂  
 

 
∑     , (4) 

Assuming independence between partitions, the variance 
of  ̂ can be estimated as:  

  ̂  
 

 
 ̂ , (5) 

where  ̂  is the partition sample variance:  
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Combining (5) and (6), we find:  
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The partition length tσ must be chosen such that the 
dependence between partitions is negligible, as required for 
the validity of (5). However, a too large value will leave too 
few segments, resulting in an increased variance of the 
estimate. It was found that a partition length       is a 
reasonable choice.  Because partition boundaries typically are 
not aligned with encounter boundaries, this estimator requires 
the knowledge of distribution of alarms over time within 
encounters. This is resolved by aligning partition boundaries 

with encounter boundaries, leading to the estimator  ̂: 
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In practice, this estimator provides similar results as the 
segment based estimate (7) and is easier to use because it 
only depends on the alarm rates    and duration    per 
encounter. For small datasets, a model-based approach may 
be considered as described in [16] for time series, resulting in 
an accurate variance estimate also for small datasets. 

V. ILLUSTRATIVE RESULTS 

The alarm rate estimators are applied to a subset of the 
publically available Multiparameter Intelligent Monitoring in 
Intensive Care (MIMIC) II database [11]. The alarm load 
estimation has been applied to heart rate (HR), oxygen 
saturation (SpO2) and respiratory rate (RR) data in the 
database, which has been sampled at 1 Hz frequency. These 
signals, along with recorded alarms, have been converted to 
the same MariaDB database used in the recording PC (see 
section IV). The analyzed data covers 500 encounters with an 
average length of stay of   =3.2 days. 

Our analytics application produces a range of reports 
based on the recorded alarms, such as the top alarm types per 
severity, per unit, etc., as reported in literature [3][4][9][10]. 
A further useful report is the alarm rate as a function of the 
encounter, where the encounters are ordered from high to low 
alarm rate. Expressed in basic statistical functions, this is the 

inverse survival function     : 

     ( )     (   )   , 

where   is the encounter fraction,  (   ) is the 
survival function for the alarm rate  : the probability that 

   . The survival function is the reverse of the cumulative 
histogram: 

  (   )      (   ). 

Figure 1 shows the inverse survival function for the alarm 
count per encounter   . Because of its direct contribution to 
the mean alarm rate (2), the encounter alarm count    is 
reported here, as opposed to the encounter alarm rate   . The 
distribution can be characterized by the fraction of encounters 
that cause a given fraction of the total alarms. For example, 
for this MIMIC-II subset, it is found that 50% of the alarms 
are caused by 12% of encounters with the highest alarm 
count. This statistic shows the potential alarm rate reduction 
that can be achieved by addressing a small percentage of 
patients. 

Figure 2 shows the alarm rate estimates as a function of 
the SpO2 alarm threshold using alarm regeneration, with the 
95% confidence interval as calculated the variance estimate 
(5). These results allow for an assessment of the alarm rate 
reduction achieved by changes in default thresholds.  The 
figure shows the example of decreasing the SpO2 low alarm 
threshold from 90% to 86%, resulting in a predicted alarm 
rate reduction of 61%. Also shown is the histogram for 
recorded alarm thresholds. The total recorded SpO2 Low rate 
is 11.6 alarms/patient/day.  

 

 

 

Figure 1 The inverse survival function for the alarm rate per encounter for 

the MIMIC-II subset. The inverse survival function shows the encounters 
ordered according to alarm rate, from high to low. 50% of the total alarm 

rate is caused by the 12% of encounters with the highest alert count. 

 

Figure 2 Alarm rate estimates as a function of the alarm threshold for the 
SpO2 Low alarm. The scenario of a threshold reduction from 90% to 86% 

is also shown. The bars represent the frequency of thresholds in the 

recorded alarms. 
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A further measure of interest is the alarm duration. The 
survival function for the alarm duration for the SpO2 low 
alarm based on setting type A are given in figure 3. This 
graph shows the alarm rate reduction that can be achieved by 
increasing the alarm delay. The example scenario where we 
increase the alarm delay to 20 seconds results in an alarm rate 
reduction of 43% relative to an alarm delay of 10 seconds. 

Besides duration per alarm, also the fraction of time an 
alarm condition is met across the entire population can be 
calculated. This can be derived efficiently from the folded 
cumulative histogram of the vital sign values – see figure 4 
for the heart rate histogram. 

For the MIMIC-II subset, the high threshold for heart rate 
of 120 bmp is violated for 5% of the time, or 3 minutes per 
hour. For High Priority alarms, the alarm continues to sound 
as long as the alarm condition is met, unless it is silenced 
earlier. Hence, the produced sound level for High Priority 
alarms is expected to be correlated to the alarm duration. 
Conversely, if an alarm condition is configured as Low 
Priority, an alarm sound is produced of a fixed duration. 
Consequently, for Low Priority alarms, it is expected that the 
sound level is most strongly correlated with the alarm rate. 

VI. CONCLUSION 

Alarm regeneration was introduced as a method to 

quantify the alarm rate with new alarm thresholds. This 

allows for a fast evaluation of several alarm settings, prior to 

applying them in the clinical setting. This will support 

clinicians in defining new settings aimed at reducing alarm 

fatigue, based on data from their own, unique patient 

population. 

With this method clinicians can identify new thresholds 

that could significantly reduce alarm fatigue, while at the 

same time using their own judgment to set bounds on how 

wide thresholds can be safely set. Given sufficient resources, 

this judgment can be supported by recording the occurrence 

of clinical events along with vital signs and alarms. With this 

data, performance statistics (true/false alarm rate) can be 

calculated for both recorded and generated alarms. 
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Figure 3 The survival function for the SpO2 low alarm shows the 

fraction of alarms with a duration longer than D seconds. The alarm load 
reduction achieved by increasing the alarm delay can be directly derived 

from this graph. 

 

Figure 4 The folded cumulative histogram for heart rate (HR). To 

facilitate visual evaluation of the distribution for both low and high 
extreme values, the histogram F is replaced by the survival function 1-F 

for values greater than the median. 
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