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Abstract— This work studies a simple model for milk trans-
port through lactating human breast ducts, and describes
mathematically the mass transfer from alveolar sacs through
the mammary ducts to the nipple. In this model both the
phenomena of diffusion in the sacs and conventional flow in
ducts have been considered. The ensuing analysis reveals that
there is an optimal range of bifurcation numbers leading to
the easiest milk flow based on the minimum flow resistance.
This model formulates certain difficult-to-measure values like
diameter of the alveolar sacs, and the total length of the milk
path as a function of easy-to-measure properties such as milk
fluid properties and macroscopic measurements of the breast.
Alveolar dimensions from breast tissues of six lactating women
are measured and reported in this paper. The theoretically
calculated alveoli diameters for optimum milk flow (as a
function of bifurcation numbers) show excellent match with our
biological data on alveolar dimensions. Also, the mathematical
model indicates that for minimum milk flow resistance the
glandular tissue must be within a short distance from the base
of the nipple, an observation that matches well with the latest
anatomical and physiological research.

I. INTRODUCTION

Evolution of many biological flow systems has given rise
to structures that provide better access paths for the flow.
Specifically, tree-shaped mass transfer structures are common
in biological organs, e.g. the lung, the kidney, the breast, and
other vascular tissue. A deeper understanding of this complex
branching architecture of organs is essential for elucidating
both the physical basis of the transport processes, and the
pathology of many human diseases, such as agenesis and
asthma in the kidney and lung, as well as breast carcinoma,
a disease of terminal ductal lobular units [1]. Many aspects
of the diagnosis, healing and investigation of the origin of
breast diseases would significantly benefit from a detailed
knowledge of the breast branching morphogenesis [2]. A
great number of conventional breast conditions such as
ductal blockage, breast engorgement, breast abscess, and
galactocele can render breastfeeding difficult and sometimes
impossible. There are many factors that contribute to diseases
of the breast, but among the most important are those
that relate to the mechanical properties of the breast, e.g.,
ductal physical properties. Milk production in the breast
(diffusion in sacs), the factors that move the fluid of milk
in the ducts toward the nipple (sucking pressure) are all
essential mechanical processes. Despite the clear advantage
of a fundamental understanding of the branching structure
properties in the human breast ductal system, this has not

yet been the subject of careful mathematical modeling and
evaluation.

The mathematical model proposed in this paper can be
utilized to deduce the milk flow from the mechanical proper-
ties of the bifurcated ducting structure in the lactating breast.
Our model represents the total path from the production zone
(alveoli) to the outlet zone (nipple), leading to closed-form
expressions that yield the milk flow parameters from the
geometric parameters of the model. An immediate example
of the applications of this model is the calculation of flow
resistance as the ratio of the pressure drop and the milk flow
rate. Flow resistance is an important mechanical property of
the breast ductal system that must be successfully overcome
by the sucking pressure. Calculation of milk-way resistance
is made possible by the notion that the ductal tree behaves
like a connected conduit through which flows an incompress-
ible fluid (milk). This paper finds a range for the optimum
number of branchings based on the easiest milk flow through
ducts, in other words the minimum overall flow resistance.
It is demonstrated that the combination of convective and
diffusive mechanism allows for the maximization of milk
transfer through the mammary ducts in order to achieve the
best use of this system.

II. THEORETICAL MODELING OF FLOW RESISTANCE

Milk flow in the lactating breast has two paths: diffusion of
blood-derived components (protein, glucose and fat) through
alveoli (diffusive resistance), and flow through mammary
ducts (convective resistance). The total minimum flow resis-
tance is obtained when the structure is arranged in a way that
the flows with high resistance (alveoli) occupy the smallest
scales of the flow system, while the flows with the lower
resistance (ducts) inhabit the larger scales.

A. Mass Diffusion Resistance
During lactation, the infants sucking stimulates the hor-

mone, Oxytocin, and prompted by that, alveoli walls start
contracting [3] and the bloodstreams (milk ingredients) ap-
proach the capillaries near the breast tissue into alveoli to
form the building blocks of milk. The bloodstream moves
through the cells that line the alveoli and into the milk.
Assuming a steady diffusion of fluid with density, ρ, through
the alveolous’ wall with thickness of δ, and surface area of
A, the rate of the diffusion ṁ (temporal rate of arrival of
milk mass in the sac) in one dimensional form will be [4]:
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Fig. B.1. The architecture of each lobe, consisting of several lobules

ṁ =
ρDfA

δ
∆M (1)

where Df is the diffusion coefficient (m2/s) [5] of
blood through the membrane walls and ∆M is deriving
potential for flow of mass through the wall. Considering the
alveoli muscle contraction (∆Ppl), the volume changes of
the alveoli by flow of bloodstreams, and the bulk modulus
of elasticity (E) of the alveoli tissue, the deriving potential
(∆M) can be calculated as ∆Ppl/E [4].
δ represents the total distance from blood side to the milk

side in alveoli (Fig. B.1). δ includes the capillary cell lining,
the basement membrane, and the two epithelial layers. The
recent studies [7] have shown that the thickness of alveoli is
approximately δ = 0.2dsac. Alveolar sacs can have various
shapes , but in a more simplistic approach they can be
considered mostly spherical with the alveolar diameter set as
dsac. Therefore, the total mass of blood components diffusing
to the alveolar sacs will be:

ṁ =
πdsac ρ ∆Ppl Df

0.2E
(2)

Our model consists of 2n sacs in each lobule, and ”a”
lobules per lobe (Fig. B.2), therefore the total number of
sacs per lobe is (2n × a) resulting in a proportional mass
flow rate (Equation 3) physiologically this means that each
parent duct divides into two identical daughters. According
to the latest literature on human breast anatomy, the number
of lobules per lobe is estimated to be between 20-40.

Therefore, the total diffusive mass flow rate as a function
of pressure drop will be:

n∑
0

ṁsac = (2n × a)
πdsac ρ ∆Ppl Df

0.2E
(3)

and the diffusive resistance will be:

Rdf =
0.2E

(2n × a)πdsacρDf
(4)

We make one more manipulation to this equation, moti-
vated by the fact that the measurement of dsac is challenging
because it requires histoanatomical analysis of human lactat-
ing breast tissue, and it may have a functional relationship to

other variables in the equation, in particular the bifurcation
number n. Therefore:

dsac +

n∑
i=0

Ln =

∞∑
i=0

Ln (5)

Substitution for Ln in terms of L0 from Equation (9) and
simple calculations yield:

dsac =
1

1− 2−1/3
L0 −

1− 2−(n+1)/3

1− 2−1/3
L=

4.85

2(n+1)/3
L0 (6)

Therefore, the diffusion resistance for one lobule in Equa-
tion (4) will be:

Rdf = (
0.0412 E

a π L0 ρ Df
) 2(

−2n+1
3 ) (7)

B. Convective Resistance
Milk flows along a conduit with circular cross-section.

Considering the largest values of initial duct diameter (2mm),
maximum observed milk flow rate (4.8 g/min) [6], and the
minimum measured milk viscosity (1.66×10−6m2/s)[9], the
maximum Reynolds number of the milk flow in the conduits
will be around 30 which can be considered as laminar flow.
Therefore, the milk flow resistance of each of the two ducts
arising from bifurcation n can be represented by the well-
known Hagen-Poiseuille equation[10] as:

Rd(n) =
128µLn

πρD4
n

(8)

Rd is the resistance of a single duct, ρ, µ, Dn, and Ln
stand for milk density, dynamic viscosity, duct diameter, and
duct length (in generation n) respectively. This formula often
appears in texts of pulmonary physiology [11]. The convec-
tive resistance calculation is based on a single suckling pulse.
In a separate work, the authors have studied the behavior of
milk flow in mammary ducts with pulsating flow during the
total period of breastfeeding [8].

For the geometry of the model, a simple structure of the
mammary ductal tree has been considered with dichotomous
branching scheme for each lobule (Fig. B.2). Each parent
duct is divided into two identical daughters and this division
is repeated many times, with each successive division being
called a generation. Assuming complete symmetry, the value
of two dimensionless ratios, Dn/Dn−1 and Ln/Ln−1 which
are the ratio between consecutive duct diameters and duct
lengths, can be found by constructal law which has been
used in several other natural and biological domains to sim-
plify the theoretical calculations of a complicated branching
system [13], [12]:

Dn

Dn−1
= 2−1/3 and

Ln

Ln−1
= 2−1/3 (9)

Dn and Ln are respectively ductal diameter and length in
generation n.

With the above assumption, the number of milk paths in
generation n is 2n and the total convective resistance can
be obtained by adding the individual resistances in series
or in parallel (Fig. B.2). Assuming the same pressure drop
across each of the two daughters in the same generation, the
convective resistance to the laminar flow in each single duct
in generation 0 to n is:

Rd(n) = 2n R0 (10)

where D0 and L0 are the diameter and the length of the first
mammary duct respectively. In each generation k we note
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Fig. B.2. Dichotomous branching of ducts and representative model

TABLE I
MILK FLOW RESISTANCE: COMPARISON OF MATHEMATICAL MODELING

WITH EXPERIMENTAL DATA FROM THE LITERATURE

No Sucking Pressure Mass Production Ref Log
(Rtot)

1 60-160(cmH2O) V̇ =28-36(ml/min) [15] ≈7.2
2 9.5±5.3(cmH2O) V̇ =1.2-8.4(ml/min) [16] ≈7.0
3 50 ±5.7(mmHg) ṁ=6.6 ± 5.9(g/min) [17] ≈7.7
4 143±42(mmHg) ṁ=4.6(g/5sec) [3] ≈7.3
5 100 (mmHg) V̇ =5.15×10−4(ml/min) [18] ≈7.3
6 Minimum possible logarithmic resistance≈6.6 in this study

that due to symmetry the pressure at the upstream ends of
all the ducts in the same generation is equal, and similarly,
the pressure at the downstream end of these ducts is also
equivalent. Therefore, for computational purposes, one may
consider that these ducts operate in parallel. Thus, using
the physical laws of combining parallel resistors, the total
resistance contributed by generation k is calculated:

Rgen
d (k) =

Rk

2k
= R0 (11)

The generations act in series, therefore the overall resis-
tance increases with the number of generations as follows:

Rtot
d =

n∑
k=0

Rgen
d (k) = (n+ 1)R0 =

128µL0

πρD4
0

(n+ 1) (12)

Bifurcated junctions also add extra resistance to the
convective milk flow system. This specific resistance can
be calculated by determining the energy dissipation and
the pressure drop occurring between the upstream and the
downstream of the bifurcated joint. Considering laminar flow
in branching geometries following constructal law, Equation
(9), the order of bifurcation resistances are small that can
be neglected compared to the convective resistance. This has
been claimed by Reis et al. [14].

Therefore, the total convection resistance
(ductal+bifurcation) for the mammary gland with nipple at
n = 0 and considering (n − 1) bifurcation levels, is given
by:

Rtot
cn = (n+ 1)R0 (13)

III. RESULTS AND DISCUSSION

The convective resistance is an increasing linear function
of n. The diffusive resistance is inversely proportional to
2n. With each increment in n the value of Rdf decreases by
approximately 37%.

A. Optimal Bifurcation Level
For an optimum milk flow in lactating breast, the total

resistance which is the summation of the alveolar diffusive
resistance in Equation (7) and the convective resistance in
Equation (13) is minimized.

As mentioned earlier, 90% of breasts have 15-20 lobes,
however only 5-9 lobes in each breast have active mammary
ducts that open to the nipple [20]. Since these active ducts
are arranged in a parallel configuration, the total resistance
in Equation (14) should be divided by a factor of b, with
5≤ b ≤9.

RBreast
tot(cn+df) =

1

b

[
128µL0

πρmD4
0

(n+ 1) +
2(−2n+1)/3E

24.25aπL0ρbDf

]
(14)

By taking the derivative with respect to n and setting it to
zero, it can be verified that the minimum value of the total
resistance (Rtot (cn+ndf)) is achieved as:

n = 4.9834 log

(
ρm D4

0 E

a µ L2
0 ρb Df

)
− 18.5721 (15)

The values of ρm, ρb, D0, L0, ν, E, a, b and Df
are listed in [8]. These parameters have been determined
experimentally, with appropriate references noted in the
table I. These values depend on the details of the individual
anatomy, therefore they do not have a fixed value across the
population and vary between women [20]. Using the average
value of each parameter, Equation (15) leads to the optimum
bifurcation level of n ≈ 25(Fig. C.3)

Recall that the optimization of the bifurcation levels was
based on analytical minimization of milk flow resistance.
The natural system that is represented by this model is also
presumed to be optimized (e.g. by natural selection through
generations) but since such a natural optimization is random
and may not be mathematically exact, one would expect that
our model would yield a value for milk flow resistance that
is lower bound on the naturally measured values. Indeed our
model, based on the average measured quantities mentioned
above, yields an optimal (minimal) milk flow resistance of
log(Rtot (c+df)) ≈ 6.6.

To validate our finding, we compared this minimal resis-
tance with the experimental data in the literature. There are
several experimental studies measuring the sucking pressure
(by infant or breast pump) simultaneously with the milk
flow rate during breastfeeding in a healthy breast [16],
[17], [18], [19], [3]. The experimentally measured milk flow
resistance has been between 7 and 7.7 in log scale (Table I).
The separation of the model-induced value of 6.6 and the
experimental range 7-7.7 should be judged in light of the
variability of experimental data. Furthermore, the range of
experimental milk flow resistance, in the manner calculated
in the table, only covers the variation among experiments but
not the variation within each experiment. In other words, the
resistance for each experiment is reported via an averaging of
the pressure and mass production in that experiment. Without
such intra-experiment averaging, a slightly higher variation in
experimental data will be obtained, as well as a slightly lower
gap between the model-based minimum and the experimental
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data. The empirical reason for this averaging is the periodic
nature of infant suckling pressure which produces a broad
range in the measurement of pressure and flow. One may
alternatively report the milk flow resistance measured at the
peak as well as the trough of the infant suckling cycle.
However, that may produce other methodological issues,
therefore this table resorts to averaging in each experiment.

Applying the maximum/minimum of milk properties val-
ues and ductal physical parameters [8], results in wide
range for 9.2< dsac <270.2 micrometers. To examine how
this model-derived range compares with biological data, we
measured alveolar diameters in 6 breast tissues of lactat-
ing women obtained from the Archive of the School of
Anatomy, Physiology and Human Biology, The University
of Western Australia. Paraffinized tissues were sectioned
and imaged as described in [15]. In each of the 6 tissues,
30 representative alveoli from fuller and emptier adjacent
lobules were analyzed. In consistence with the simplification
of the presented model of spherical alveoli, complex-shaped
alveoli such as the alveolus on the bottom right corner of
Fig. C.4(Left), were not analyzed. Therefore, the shape of
the analyzed alveoli can be described as spherical or oval.
For each alveolus, we measured the large and small diameter
in a cross-like format (Fig. C.4(Rigth)).

By considering the average values of milk properties and
ductal physical properties, the total theoretical length of the
breast duct can be calculated as:

Ltot =

n∑
0

Ln (16)

Ltot = L0
1− (2−1/3)n

1− (2−1/3)
≈ 38 (17)

This conclusion is in agreement with, and is validated by,
recent findings based on ultrasound imaging [20] revealing
that a large proportion of the glandular tissue appears at
30mm radius from the base of the nipple. Any separation
between the theoretical model and the biological measure-
ments may be explained by the fact that the theoretical model
assumes all branches of the bifurcation tree are equally deep,
i.e., to n levels, while in reality the bifurcation levels in
different branches of the duct tree are not always exactly
equivalent. Some paths in the actual biological trees are
terminated earlier than some others, due to the limitations
in the natural amount of space available in the breast for the
growth of these trees.
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