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Abstract— Bipolar radiofrequency-induced thermofusion has
become a widely accepted method successfully used in open
and particularly in minimally-invasive surgery for the sealing
of blood vessels and tissue of up to several millimeters diameter.
Despite its wide-spread application, the thermofusion process
itself is not well understood on a quantitative and dynamic level,
and manufacturers largely rely on trial-and-error methods to
improve existing instruments. To predict the effect of alternative
generator control strategies and to allow for a more systematic
approach to improve thermofusion instruments, a mathematical
model of the thermofusion process is developed. The system
equations describe the spatial and temporal evolution of the
tissue temperature due to Joule heating and heat transfer, and
the loss of tissue water due to vaporization. The resulting effects
on the tissue properties, most importantly the electrical resis-
tivity, heat capacity and thermal conductivity, are considered
as well. Experimental results indicate that the extent of the
lateral thermal damage is directly affected by Joule heating of
the lateral tissue. The experimental findings are supported by
simulation results using the proposed mathematical model of
thermofusion.

I. INTRODUCTION

Radiofrequency-induced bipolar vessel sealing, also
known as thermofusion, is an electrosurgical procedure for
the vascular occlusion of blood vessels of up to 6 mm
diameter [1]. A bipolar vessel sealing system usually consists
of a high-frequency alternating current generator and a ther-
mofusion instrument which is typically designed as forceps
with electrodes on the jaws of the instrument. During surgery,
the blood vessel to be sealed is firmly grasped between the
jaws (see Fig. 1) and an alternating current is applied directly
through the grasped tissue. Joule heating due to the electrical
resistivity of the tissue results in the denaturation of collagen
and other proteins. Under pressure, the uncoiled peptide
chains form new coherent structures, effectively fusing the
two vessel walls together, and create a reliable occlusion of
the blood vessel.

Thermofusion instruments are used in many surgical pro-
cedures for the safe and reliable sealing of larger blood
vessels, as well as for the hemostasis of smaller vessels
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for the nearly bloodless preparation of tissue structures,
both in open and minimally-invasive surgery. Despite their
widespread use, most modern bipolar vessel sealing systems
are still the result of a highly empirical development pro-
cess. Key parameters of the instruments like form, size, or
surface structure of the jaws have been iteratively improved
based on the experience with earlier variants and the results
of many trial-and-error experimental studies. An important
aspect, besides the quality of the sealing, is the thermal
damaging of the lateral tissue. This is especially the case
when using thermofusion instruments to prepare tissue close
to thermosensitive structures that must not be damaged, like
e.g. nerves or the ureters. Both, the sealing quality and the
extent of the thermal damage are affected by a large number
of parameters. The relation of the parameters among each
other and their specific effect on the sealing quality and
thermal damage is not fully understood.

In the field of electrosurgery, only few mathematical mod-
eling approaches have been reported in the literature, many
of which focus on monopolar applications like radiofre-
quency tissue ablation. All models use a finite element (FE)
modeling approach for a coupled simulation of the electric
field and the temperature of the tissue. Dodde et al. [2]
developed a thermo-electric model to study the temperature
distribution assuming different electrode geometries. This
model was extended by Chen et al. [3] to account for
changes in the specific heat capacity, electrical resistance and
water contents of the tissue during the thermofusion process.
Gonzalez-Suarez et al. [4] presented a FE model for a bipolar
instrument with internally cooled electrodes. Unfortunately,
the high level of detail of FE models results in a very
large number of state variables and hence requires much
computational time. Standard FE modeling tools typically
are not able to simulate effects like evaporation and the
resulting loss of mass and change of properties directly.
For a systematic analysis of the thermofusion process, the
mathematical model must reproduce the relevant dynamics
while being as concise as possible.

In this work, a dynamical model of bipolar thermofusion
is proposed. The system equations describe the spatial and
temporal evolution of the tissue temperature due to Joule
heating and heat transfer, and the loss of tissue water due
to vaporization and the resulting effect on the tissue prop-
erties, most importantly electrical resistivity, heat capacity
and thermal conductivity. This model may be used for a
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Fig. 1. Application of the ERBE BiClampr 201 C to occlude the vascu-
lature during vaginal hysterectomy. Image courtesy of ERBE GmbH.

detailed analysis of the influence of different parameters and
thus help to achieve a better understanding of the vessel
sealing process. Building on that, the model may help to
systematically improve existing thermofusion instruments
and to develop more effective control strategies, both with
the goal of optimizing the vessel sealing quality while at the
same time minimizing the lateral damage.

II. MODELING

Consider a single blood vessel, held between the two
forceps of a thermofusion instrument as shown in Fig. 2. It
is assumed that both the instrument and the blood vessel are
symmetric with respect to the x-y-plane. Let 2wT and 2wM

be the width of the tissue and the jaws, respectively, and
let wL = wT − wM denote the width of the lateral tissue. To
reduce the number of state variables, only the right half of the
system is considered, i.e. z ∈ (0, wT). In the following it is
assumed, that the tissue can be considered as a homogenous
ideal composite of water and dry tissue matter. Let the state
variables be the temperature T , the pressure p, and the mass
of water and dry tissue matter, mW and mD, respectively.
Then, any extensive property Φ(T, p,mW,mD) is given by

Φ(T, p,mW,mD) = mWφW(T, p) +mDφD(T, p), (1)

where φW and φD are the corresponding mass-specific proper-
ties of water and dry tissue matter, respectively. It is assumed
that the tissue is homogenous across its cross-section, which
means that the temperature T = T (t, z), and the masses
mi = mi(t, z) depend only on the lateral position z and the
time t. It is furthermore assumed that the pressure is constant,
i.e. p(t, z) = p0, and that the tissue is incompressible, i.e.
the mass-specific volumes of water vW and dry tissue vD are
constant.

A. Infinitesimal volume element

Consider an infinitesimal volume element of the tissue,
as shown in Fig. 2, with infinitesimally small width dz.
The volume of the volume element is given by V (t, z) =
A(t, z)dz, where A(t, z) is the cross sectional area of the
tissue. Similarly, the mass of water and the mass of dry
matter are given by mW = m′Wdz and mD = m′Ddz, with m′W
and m′D denoting the specific mass of water and dry matter,
respectively. Note that the term specific refers to specific with
respect to the width dz, if not stated otherwise.
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Fig. 2. Experimental setup of the thermofusion instrument and the vessel
grasped between the electrodes.

B. Specific mass balance
Due to evaporation, the water contents of the tissue

decreases during the sealing process, while the amount of dry
matter remains unchanged. It is assumed that the vaporized
tissue water immediately leaves the volume element into the
environment. Let jm,vap be the specific evaporation rate, then
the specific mass balances of water and dry tissue matter are
given by

ṁ′W(t, z) = −jm,vap(t, z) and ṁ′D(t, z) = 0, (2)

respectively.

C. Tissue temperature
According to equation (1), the enthalpy of the volume

element is given by

H(T, p,mW,mD) = mWhW(T, p) +mDhD(T, p), (3)

where hW and hD are the mass-specific enthalpies of water
and dry tissue matter, respectively. For constant pressure p0,
the mass-specific enthalpy is given by

h(T, p0) = cpT + h0, (4)

where cp is the mass-specific heat capacity, and h0 is an
arbitrary constant value. Differentiation with respect to time
yields

Ḣ = −Jm,vaphW + Ṫ · (mWcp,W +mDcp,D), (5)

with Jm,vap = jm,vap dz.
The first law of thermodynamics in terms of the enthalpy

is given by

Ḣ = JQ,ht + JQ,ex + JQ,el − Jm,vap(hW + ∆hvap,W) , (6)

where JQ,ht is the heat flow into the volume element through
heat transfer in z-direction, JQ,ex is the heat loss into the
environment, JQ,el is the rate of heat generated by electric
Joule heating within the volume element, and Jm,vap(hW +
∆hvap,W) is the enthalpy of the vaporized tissue water leaving
the volume element. Inserting equation (5) results in the
differential equation for the tissue temperature

Ṫ =
JQ,ht + JQ,ex + JQ,el − Jm,vap∆hvap,W

mWcp,W +mDcp,D
. (7)

For the infinitesimal volume element under consideration,
equation (7) becomes

Ṫ =
q̇ht + q̇ex + q̇el − jm,vap∆hvap,W

m′Wcp,W +m′Dcp,D
, (8)
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where the q̇i denote the specific heat flows.

D. Specific evaporation rate

From the observation that the temperature does not exceed
the boiling temperature of water, the maximum specific
evaporation rate is derived from equation (8) by inserting
Ṫ = 0 on the left side:

jm,vap, max =
1

∆hvap,W
(q̇ht + q̇ex + q̇el). (9)

Assuming that there is no condensation, i.e. the evaporation
rate is always non-negative, and that evaporation does not
begin abruptly at 100 ◦ C, the specific evaporation rate can
be modeled as

jm,vap = max
(

0, eT−100
◦C · jm,vap, max

)
. (10)

E. Specific heat transfer

Let λ denote the appropriate heat transfer coefficients. The
specific heat flow into the environment q̇ex is modeled by

q̇ex(t, z) = −λex (T (t, z)− Tex) . (11)

The specific heat transfer q̇ht is modeled by Fourier’s law

q̇ht(t, z) =
∂

∂z

(
−λ(t, z)A(t, z)

∂T (t, z)

∂z

)
. (12)

Thus, the temperature differential equation becomes a partial
differential equation (PDE). The boundary conditions are

q̇ht(t, z) = 0
∣∣∣
z=0

, and (13)

q̇ht(t, z) = −λbc (T (t, z)− Tex)
∣∣∣
z=wT

, (14)

where equation (13) is given due to the assumed symmetry
to z = 0, and equation (14) models the specific heat flow
into the environment on the right boundary.

F. Joule heating

Assuming that the cross sectional area is rectangular, i.e.
A(t, z) = dy · l(t, z), then the specific heat generated by
the electric current passing through the infinitesimal volume
element is given by

q̇el(t, z) =
l(t, z)

dy · r(t, z)
U2(t, z), (15)

which models the specific electrical power of an ohmic
resistor with uniform cross section, see e.g. [5]. Here, dy
is the distance between the electrodes, i.e. the thickness of
the tissue, l(t, z) is the length of the tissue, and r(t, z) is the
specific electrical resistivity (see next section). The voltage
U(t, z) applied to the medial tissue is given by the voltage
UE(t) impressed between the electrodes, and assumed to be
constant over the spatial domain of the electrode, i.e.

U(t, z) = UE(t) for z ∈ [0, wM]. (16)

A preliminary evaluation of the surface temperatures of
the lateral tissue during ex vivo vessel sealing experiments
shows an increase that is too fast to be caused alone by heat
transfer from the medial tissue. A possible explanation for

Fig. 3. Temperature dependent tissue resistivity as given by (18).

this effect is Joule heating within the lateral tissue near the
edge of the electrodes. The electrical field is approximated by
an analogous voltage, which is applied to the lateral tissue
according to equation (15). The voltage U(t, z) applied to
the lateral tissue is assumed to equal the voltage impressed
between the electrodes at the edge of the instrument and to
decrease exponentially with the distance from the instrument,
i.e.

U(t, z) = eα(wM−z) · UE(t) for z ∈ (wM, wT), (17)

where α > 0 is a tuning parameter that determines how far
the simulated electrical field extends into the lateral tissue.

G. Tissue resistivity

For the electrical resistivity, the phenomenological model

r(t, z) =

(
c+

b1T (t, z)− b0
T a1(t, z) + a0

)
+ rmax · eT (t,z)−Tvap (18)

was chosen to describe the resistivity as a function of the
tissue temperature T (t, z). The coefficients ai, bj , and c
were fitted to measurement data and describe the tissue
resistivity for temperatures well below vaporization temper-
ature. The exponential term, with rmax � 1, describes the
dominating resistivity increase that is observed for higher
temperatures.The resulting resistivity is shown in Fig. 3 for
the relevant temperature range.

H. Other parameters

Parameter values reported in the literature, such as the
mass-specific heat capacities cp, heat transfer coefficients λ
or electric resistance, were set to the reported values, see e.g.
[6]. The remaining unknown parameters were fitted using
a single set of measurement data and validated using the
remaining measurement data sets.

III. RESULTS

A. Experimental data

Data was provided by ERBE Elektromedizin GmbH in
the form of the electric currents and voltages measured
during ex vivo vessel sealing experiments. Renal arteries
with a diameter of about 6.5 mm, taken from domestic
pigs, were sealed using the BiClampr 201 T thermofusion
instrument. The AC generator used the proprietary voltage
controlled BiClamp mode to impose a series of rectangular
voltage pulses, see Fig. 4 (red dotted line). The resulting
characteristic course of the voltage and current is shown
Fig. 4 (brown line) for the duration of two pulses. The
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Fig. 4. Normalized characteristic course of the measured (brown), simu-
lated (blue) and desired (dotted red) effective electric voltage and current.

electric variables show a similar behavior during each pulse,
which can essentially be divided into two phases. The first
phase is characterized by a large deviation between the
desired and actual voltage, which is due to a limitation of
the rate of the current’s increase that is necessary in order
to prevent sparking. The beginning of the second phase is
marked by a sudden increase of the impedance, after which
the imposed voltage closely follows the desired value.

B. Simulation results

The mathematical model was implemented with MAT-
LAB/Simulink. The temperature PDE was discretized using
finite differences with a spatial discretization of approxi-
mately 0.2 mm. The resulting system of ordinary differential
equations consists of 118 state variables was numerically
integrated using the ODE solver ODE15S to account for the
stiff non-linear dynamics.

The simulated electric variables are in good agreement
with the measurements, compare Fig. 4 (blue line). The
dynamics during both phases is well reproduced by the
simulation model, with only minor deviations from the
measured data. The temperature distribution shown in Fig. 5
shows a rapid increase of the temperature close to the edge
of the instrument which corresponds well to the evaluation
of the surface temperature during similar experiments.

IV. DISCUSSION AND CONCLUSION

In this work, a mathematical model for the analysis of
the dynamics of bipolar vessel sealing is proposed. The
simulated electric variables and temperature distribution cor-
respond well to measurements of ex vivo experiments. The
model is able to reproduce the characteristic phases as well as
the transition between. While experimental data was limited
to the effective voltage imposed to the tissue and the resulting
electrical current, the simulation model offers a more detailed
insight into the dynamics of the vessel sealing process. The
analysis of the spatial distribution of the current density
shows that it is comparably homogenous during the first
phase, but becomes significantly less homogenous in the

Fig. 5. Normalized spatial distribution of the temperature and the specific
current over time. Note that zL = z−wM . The gray dashed line marks the
edge of the electrode.

second phase, see Fig. 5. The electrical current is diverted
into the lateral tissue, while the current density in the medial
tissue is notably reduced. The extent of the lateral current
flow depends on the chosen approximation of the electric
field.

The excellent prediction of the electrical and temperature
variables make the model suitable for a more detailed anal-
ysis of the thermofusion process and to develop and test
improved generator strategies. The model may be used to
compare the lateral damage of different control strategies
and thus help to minimize the thermal damaging of the
surrounding tissue. Furthermore, the model may serve for
a systematical analysis of the influence and interdependency
of different parameters. As a result, simulation studies using
the proposed model may be used to improve the experimental
setup and key parameters of the bipolar vessel sealing
system, further increasing reliability and thus improving the
safety of the patient.
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