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Abstract—A novel multivariate lesion-symptom mapping 

(LSM) methodology was developed in this study. Lesion analysis 

is a classic model for studying brain functions. Using lesion data, 

focal brain-behavior associations have been widely assessed 

using the massive voxel-based lesion symptom mapping (VLSM) 

method. Assessing each voxel independently, VLSM suffers 

from low sensitivity after correcting for the enormous number 

of comparisons. It is also incapable for assessing a spatially 

distributed association pattern though the brain-behavior 

associations generally involve a collection of functionally related 

voxels. To solve these two outstanding problems, we carried out 

the first multivariate lesion symptom mapping (MLSM) in this 

study using support vector regression (SVR). In the so dubbed 

SVR-LSM, the symptom relation to the entire lesion map rather 

than each isolated voxel is modeled using a non-linear function, 

so the inter-voxel correlations are intrinsically considered, 

resulting in a potentially more sensitive way to examine 

lesion-symptom relationships. Evaluations using synthetic data 

and real data showed that SVR-LSM gained a much better 

performance (in terms of sensitivity and specificity) for 

detecting brain-behavior relations than VLSM. While the 

method was designed for lesion analysis, extending it to 

neuroimaging data will be straightforward. 

I. INTRODUCTION 

Localizing brain-behavior relationships is a major goal of 
cognitive neuroscience and clinical neurology. Structural 
imaging based lesion-symptom mapping (LSM) has long been 
used to study brain-behavior relationships [1] and 
complements what can be learned from functional 
neuroimaging by providing high-quality evidence that the 
integrity of a brain region is necessary for the normal 
performance of the measured function [2]. VLSM [1] has been 
a standard statistical LSM method for assessing 
brain-behavior relationships. In VLSM, behavioral 
measurement difference between patients with and without 
lesion is assessed on a voxel-by-voxel basis. The significance 
of the behavioral difference associated with lesion status is 
used to indicate the importance of brain regions for the 
considered function. But the univariate feature of VLSM 
makes it suboptimal for assessing the multivariate 
lesion-symptom relationship [3]. 

While multivariate method has been increasingly used in 
neuroimaging, an MSLM is still lacking. In a preliminary 
study [4], we piloted partial least square (PLS) as an MLSM. 
However, it requires entering several behavioral scores into 
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the same PLS model, and degrades to VLSM when only one 
behavior score is included.  

Support vector machine (SVM) and logistic regression 
have been introduced to predict the presence of some 
symptoms in [5] and [6], respectively. But these methods rest 
on dichotomized behavioral classification, a drawback in 
cases where performance grades continuously between two 
diagnoses, or between pathology and normality. In [7], we 
piloted a machine learning regression, the support vector 
regression (SVR) [8], to predict language dysfunction using 
the spatial geometrical features of lesions.  

The purpose of this study was to develop and evaluate a 
SVR-based MLSM. SVR is an extension of support vector 
machine (SVM) [9], which has been used in many brain 
imaging studies [10] and lesion analysis as well [5]. While an 
SVM model is trained to optimally separate the input data by 
categories, an SVR model is trained to best predict a 
continuous association variable (the behavioral measure in 
LSM) using all independent variables (here, all voxels’ lesion 
statuses) [8,11]. This multivariate input-output relationship 
mapping fits precisely the goals of MLSM. By introducing 
SVR into LSM, we hypothesized that brain-behavior 
association detection sensitivity of LSM will be greatly 
improved.  

The paper is organized as: method, evaluations with 
previously published lesion data [12] and both synthetic and 
real behavior scores, results and discussion.   

II. THE PROPOSED SVR-LSM METHOD 

Suppose the lesion maps are   (               ), 
each element representing a lesion map with   voxels: 
   (  

    
    

      
   ) , (         ,   is the 

number of subjects), and the behavior score is    
(               )

 . LSM can be equivalently expressed as 
a multiple regression model:  

                                        (1) 

where,   (              )
   are the fitting coefficients 

with    representing the lesion-behavior association strength 

at the  -th voxel   , and   (              )
  are the 

fitting errors.  

Because there are usually much more unknown variables 
than observations (N>>M,   can be up to millions), the 
inverse problem of (1) is generally ill-positioned. Additional 
information is then required to select a practically meaningful 
and interpretable solution out of the many.   

A.  Support Vector Regression (SVR) 

SVR solves the above mentioned under-determined 
problem by requiring the regression model to be “flat” or 
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smooth to allow the model to be less fitted to the training data 
but more flexible for predicting new data. “Flatness” here is 
measured by the norm of fitting coefficients.  

For the  -th subject’s lesion map    and behavior score   , 
the SVR model can be described by 

    
  (  )                                      (2) 

where  (  )  is the function transforming the independent 
variable (lesion data in this paper) to a higher (even infinite) 
dimensional feature space,   (          )

  is the 
fitting coefficient in the high dimensional space, and   is the 
fitting error. Except for the transform, this model is the same 
as that described in (1); and both operate in a map-wise 
manner, in contrast with the voxel-wise approach used in 
standard VLSM.  

With the “flatness” constraint, (2) can be expressed as a 
Lagrangian multiplier-based minimization problem [11]: 

min:  ( )  
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where, constant   controls the tradeoff between the flatness 
‖ ‖  and the tolerable fitting error [8],    and   

  are slack 
variables to cope with losses outside of the soft margins. | |  
is a  -insensitive error function, it equals to 0 if  | |    , 
otherwise it equals to | |     [8]. 

Equation (3) is usually solved in its dual form:  

   (4) 

where,   is the Lagrangian,   ,   
 ,    and   

  are Lagrange 
multipliers no less than 0. Solving the Lagrangian equation in 

(4), and with the help of kernel trick,  (     )  
 〈 (  )  (  )〉, the multiple regression model in (2) could be 

written as  

  ( )   ∑ (     
 )〈 (  )  ( )〉   

   
   ,             (5) 

where, (     
 ) is simplified as    without introducing any 

ambiguity [13], and was in the following of this paper. Please 
refer to [9] and [11] for detailed description about SVR 
algorithm. 

B.  SVR-LSM  

In order to identify lesion-behavior association in a brain 
anatomical sense, the nonlinear lesion-behavior association 
captured by SVR needs to be projected back to the original 
input data space. This can be done by a “pre-image” process or 
a “sensitivity mapping”. Pre-image is to find a direct inverse 
transform of the SVR kernel, which is usually non-trivial. 
Sensitivity mapping characterizes sensitivity of the model 
output (behavior scores) to each input data (lesion map) 
dimension by calculating partial derivative of the output 
variable to the original input variable and then taking the sum 

over all input data. It has been used in several studies for 
visualizing a nonlinear classifier [14] and was used in this 
paper. For SVR-LSM, sensitivity of each voxel reflects the 
relative contributing weight of each voxel in the original 
image space to the SVR hyperplane for predicting the model 
output (behavior scores). Higher sensitivity means the voxel is 
more associated with the assessed behavior measurement.  

Following Rasmussen et al.’s work [14], sensitivity of a 
given behavior score   with respect to voxel lesion status    
can be empirically calculated as  

 ̂  
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Where,    is an   dimensional column vector with elements 
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  (    ),    is the lesion status of the  -th voxel. For the 

RBF kernel,   
( )
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The sign cancellation problem of (7) [14] is less 
problematic for lesion data because there are large amount of 
subjects don’t have lesion at many voxels, so they won’t 
contribute to the summation process. Additionally those 
subjects showing large distance from the evaluated one 
(‖    ‖

 ) will have very minor contribution because the 
exponential term becomes close to 0. A quadratic formula can 
still be used if there is severe sign cancellation.   

III. EVALUATIONS USING SYNTHETIC AND REAL DATA  

Patients with aphasia caused by left hemisphere stroke 
were recruited from the Neuro-Cognitive Rehabilitation 
Research Patient Registry at the Moss Rehabilitation Research 
Institute [15] or the Centre for Cognitive Neuroscience Patient 
Database at the University of Pennsylvania. Structural MRI 
(n=60) or CT (n=46) brain imaging was done under a protocol 
approved by the IRB at the University of Pennsylvania 
Medical School to obtain precise anatomical data. Lesions 
were manually segmented on the structural image by a trained 
technician or experienced neurologist, both of whom were 
blinded to the behavioral data (please refer to details in [12]).  

The PNT (Philadelphia Naming Test [16]) basic-level 
object naming capability with 175 object depictions from a 
variety of semantic categories. Semantic errors (SE) represent 
failure to select the right word based on its meaning; they are 
real words that bear a semantic relation to the target. In 
analysis for both synthetic and real scores, only voxels 
lesioned in     patients were included.  

A. Synthetic score 

Synthetic lesion-behavior relations were inserted into 3 a 
priori cubic ROIs (shown in Fig. 1a) based on the actual lesion 
data from the 106 subjects. Each ROI was a       
      cube. The synthetic score was generated as the mean 
lesion volume ratio of these three ROIs, and normalized to 
range [0, 100].  

The ROIs were positioned at different locations to 
represent different correlations between the local lesion status 
and the total lesion volume. For example, the lesion status of 
voxel within ROI-3 is much less correlated to the total lesion 
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volume (with mean correlation coefficient (CC) of 0.2942) 
than voxels within ROI-1 and ROI-2 (with mean CC of 0.7301 
and 0.7002, respectively), as shown in Fig. 1b. Usually, larger 
total lesion volume leads to more severe behavior dysfunction, 
it is a typical confound preventing localizing the specific 
regions for the considering function. As for the synthetic 
score, a superior LSM method should successfully localize all 
the three association regions, while an inferior LSM method 
may fail to localize ROI-3 because its correlation to the total 
lesion volume is low.  

B. SVR-LSM  

For each subject, the lesion statuses of all voxels in the 
valid voxel mask were grouped into one column vector. As a 
general preprocessing step in SVR, each subject’s lesion data 
vector was normalized to have a unit norm, i.e., the square root 
of the sum of squared elements for each vector equal to 1. The 
normalized vectors from all participants were combined into a 
feature matrix with rows representing different subjects. The 
language scores were also input into a column vector and 
normalized. An  -SVR model with RBF kernel was used to 
estimate the SVR hyperplane.  In this work, libSVM [17] was 
used for implementing SVR. 

To find the optimal values for parameter   and  , both of 
them were changed from      to    with a growth ratio of 2. 
At each particular C and  , SVR-LSM was used to identify the 
synthetic brain-behavior relations. The receiver operator 
characteristic (ROC) [18] was calculated and the area under 
the ROC curves (AUC) was collected as the objective function. 
The optimum point was found to locate at (        ) 
where AUC reached maximum. This set of values was then 
used in all the following experiments. 40 times 5-fold 
cross-validations were then performed to assess the prediction 
accuracy of SVR-LSM. Each validation used a randomly 
selected lesion and behavior data from 4/5 of the entire 
patients to train the SVR model, and the rest 1/5 subjects for 
testing.   

C. Simple regression-based VLSM  

VLSM analysis was performed by running a voxel-wise 
simple regression analysis, with the lesion status as the 
independent variable and the behavior score as the dependent 
variable. To give a fair comparison, the lesion data vector for 
each subject was also normalized to have a unit norm. The 
fitting coefficient map (beta-map) was converted into a t-map 
using S M (www fil ion ucl ac uk spm  , Wellcome Institute 
of Imaging Neuroscience, London, UK).  

D. Statistical inference for LSM maps  

To provide a statistical inference, 1000 permutations were 
performed by randomly permuting the behavior score. For 
each permutation, LSM parameter maps (t-map for VLSM 
and sensitivity map for SVR-LSM) were collected and 
compared to those obtained from the genuine data, and the 
number of permutations yielding higher value than the 
genuine one was divided by 1001 to get the permutation 
p-value. 

IV. RESULTS AND DISCUSSION 

A. Synthetic lesion-behavior relation detection  

 Fig. 1c and 1d show the results of VLSM and SVR-LSM 

for localizing the synthetic lesion-behavior associations. The 

parametric maps of VLSM and SVR-LSM were thresholded 

separately to make the number of suprathreshold voxels 

equals to the total volume of these 3 ROIs, in order to directly 

compare both the true positive and false positive voxels. As 

shown in Fig 1, SVR-LSM showed much higher sensitivity in 

ROI 1 and 3 (Fig. 1d), while VLSM could not detect ROI 3 

(Fig. 1c).   

Fig. 2 shows the ROC curves of VLSM and SVR-LSM for 
the same synthetic data used above. To calculate the ROC 
curves, LSM results were thresholded with descending 
threshold. At each threshold, a true positive rate (proportion of 
suprathreshold voxels within the ROIs) and a false positive 
rate (proportion of suprathreshold voxels outside the ROIs) 
were calculated. A better performing LSM method should 
yield a ROC curve that is closer to the true positive axis while 
farther away from the false positive axis. The area under the 
curve (AUC) was calculated to quantify the performance, 
where a larger AUC means better performance. Consistent 
with results shown in Fig. 1c and 1d, SVR-LSM yielded 
significantly higher ROC performance than VLSM as 
indicated by the AUC value.  

 

Fig. 1. Predefined ROIs and LSM results for the lesion-synthetic 

score association. a) Predefined ROIs for generating synthetic 

score; b) The correlation map between the lesion status of each 

voxel and the total lesion volume. c) Thresholded VLSM t-map; 

d) Thresholded SVR-LSM sensitivity map. 

 

Fig. 2. ROC curves of SVR-LSM and VLSM method for the 

lesion-synthetic score relationship. The AUC values for different 

methods are shown in the legend.  
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B. Detection of the lesion-SE relations 

Fig. 3a and 3b show the non-thresholded VLSM t-map and 

the SVR-LSM sensitivity map, respectively. Major 

significant clusters found by SVR-LSM confirmed and 

extended our previous findings with 2–sample t-test-based 

VLSM. In addition, SVR-LSM identified a cluster in the 

mid-to-anterior part of the left middle temporal gyrus and 

another in the left lateral prefrontal cortex [12,19].  The 

former area is strongly linked to verbal semantic processing 

[20], the latter to executive control of semantic retrieval [21].  

The explanation could be that lesions in these areas cause 

semantic errors for different reasons.  Regardless, it can be 

inferred from the present findings that these temporo-frontal 

areas form a deficit-contributing network for SE. This is 

because unlike VLSM, the multivariate SVR-LSM method 

picks up the coherence (correlation) of the different areas, as 

well as their independent contributions. By contrast, VSLSM 

only revealed brain-SE associations in left lateral prefrontal 

cortex (Fig. 3c).  

The demonstrated superior performance of SVR-LSM 

against VLSM proved our hypothesis about the LSM 

sensitivity after incorporating the multivariate regression 

process. Different from the linear multiple regression, 

SVR-LSM has a nonlinear process during model training. 

Because of the various between-voxel interactive terms 

involved in the nonlinear process, SVR-LSM intrinsically 

takes correlations between voxels into account and 

subsequently improved brain-behavior relation detection 

sensitivity.  

V. CONCLUSION 

We fully evaluated a SVR-based multivariate lesion 

symptom mapping method. It is the first of its kind in the 

literature for mapping the brain-behavior relationship using 

lesion data. Evaluations using both synthetic data and real 

data showed the superior performance of the proposed 

SVR-LSM for LSM. While we only focused on LSM, the 

method can be used for predicting the continuous behavior 

score and extending it for neuroimaging data should be 

straightforward.  
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Fig. 3. Lesion-SE localizing results with SVR-LSM and VLSM 

methods, both methods include dTLVC to control the effect of 

total lesion volume. a) The non-thresholded SVR-LSM 

sensitivity map; b) the non-thresholded VLSM t-map; c) 

thresholded (p≤0 001, cluster size>50) permutation results with 

SVR-LSM (red)  and VLSM (blue) method.  
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