
  

 

Abstract— In this work, a new shape based method to 
improve the accuracy of Brain Ultrasound-MRI image 
registration is proposed. The method is based on modified 
Shape Context (SC) descriptor in combination with CPD 
algorithm. An extensive experiment was carried out to evaluate 
the robustness of this method against different initialization 
conditions. As the results prove, the overall performance of the 
proposed algorithm outperforms both SC and CPD methods. 
In order to have control over the registration procedure, we 
simulated the deformations, missing points and outliers 
according to our Phantom MRI images.  

 

I. INTRODUCTION 

Medical imaging has been used widely for clinical 
purposes to reveal, diagnose and examine diseases. These 
images are usually taken with different modalities, 
viewpoints or in different times. As such, there is 
widespread need and interest in accurately registering 
information from these images [1]. 

Image registration or image alignment algorithms can be 
categorized into intensity-based and feature-based methods 
[2]. In the case of Ultrasound (US) and Magnetic Resonance 
(MR) image registration, the completely different nature of 
the represented information results in the failure of the 
prevalent intensity-based registration approaches. One such 
example is registration methods that use mutual information 
or correlation ratio as a cost function [3]. Therefore, Image 
registration is typically expressed as a point matching 
problem since point representations are general and easy to 
extract [4]. Image registration can also be classified 
according to the transformation model used to relate the 
target and the reference image space. The transformations 
can be either linear transformations (which include the rigid 
and other affine transforms) or elastic, “non-rigid” ones [1]. 
Whereas the linear transformations are global in nature, they 
cannot model local geometric differences between images 
[2]. The intra-operative brain deformations aren’t usually 

 
 
 

drastic and displacements larger than 20 mm are not 
expected in most the cases [5, 6], however, in some papers 
this quantity was reported to be up to 50 mm [7]. 
Furthermore, these deformations change smoothly and hence 
it’s not unreasonable to consider the deformation roughly 
rigid. Our method takes advantages of both models. 

Now, what is of importance is how to register the given 
two point sets with each other. The basic idea is to determine 
the corresponding points between the point sets, and then, to 
find a transformation which could match them. Usually, this 
process is accomplished iteratively due to the complexity of 
the problem [8, 9]. Doppler ultrasound-MRI Registration 
faces a large amount of outliers extracted from Doppler 
images incorrectly. Moreover, because of the limited field of 
view and discontinuity of US images, some points and 
vessel branches are missed in 3D reconstructions. This 
largely depends on the ultrasound-probe posture in the 
imaging process, and large in-plane rotation with respect to 
MRI images may exist. These deficiencies restrict direct use 
of many registration algorithms due to their requirement of 
acceptable initialization. In the following, some well-known 
point based registration methods will be discussed in order 
to understand the weaknesses of each method. 

II. PREVIOUS WORKS 

Iterative Closest Point (ICP), as a well-known rigid 
registration method which uses the distance criterion to 
match the points in the two point sets. Some improved 
methods were developed based on ICP such as  Trimmed 
ICP (TrICP) which is more robust to noise and less sensitive 
to good initial estimation [10]. Nevertheless, these methods 
look for closest point as a corresponding point, therefore, 
they may be trapped in local minimum easily in lack of a 
good initialization. Robust point matching (RPM) introduced 
by Gold et al [11], performs registration using deterministic 
annealing and soft assignment of correspondences between 
point sets. Whereas in ICP the correspondence generated by 
the nearest-neighbor heuristic is binary, RPM uses a soft 
correspondence. The correspondences found in RPM are 
always one-to-one, which is not always the case in ICP. The 
thin plate spline robust point matching (TPS-RPM) 
algorithm by Chui and Rangarajan, augments the RPM 
method to perform non-rigid  registration by parameterizing 
the transformation as a thin plate spline [8]. Belongie et al 
[12], present the notion of Shape Context (SC) as a shape 
descriptor which tags a log- polar histogram to each point. 
These histograms contain information about the neighbor’s 
distances and relative angles and describe the distribution of 
the local points in its vicinity [4]. They measure the 
similarity of histograms to prescribe the proper 
corresponding pair from the second point set. Coherent Point 
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Drift (CPD) is another method that aligns two locally non-
linear deformed point sets, introduced by Myronenko et al 
[13]. They use the motion coherency concept to constrain 
the maximum likelihood optimization. This method is 
proved to have an accurate result and a robust functionality 
in presence of outlier and missing points, however, as [13] 
mentioned, the performance of CPD may be affected by 
large in-plane rotations. Farnia et al [14], proposed CPD as 
an efficient point-based registration method for registering 
US-MRI brain images with misalignment up to 50 degrees. 

Considering the points mentioned above, we should look 
for a method that reduces our dependence on initial 
conditions. Only after implementation of such a method, we 
will be able to make use of CPD and its benefits. Generally, 
shape based methods and in particular, shape context 
descriptors (SC), could help us in achieving this goal. 
However, as explained in the following sections, it should be 
modified first in the case of our data. 

Therefore, our contribution in this work was to propose a 
two-stage approach to deal with the US-MR image 
registration problem. First, a modified shape based algorithm 
with a rational rejection manner was introduced that could 
prepare an effective initialization and minimize the false 
correspond detection; Second, the CPD algorithm was 
employed to minimize the residual error and improve 
registration precision. 

In the following section our brain phantom is described. 
In the second section, a modified shape-based method 
(including point selection, finding the corresponding point, 
and false correspond rejection) will be studied. Finally, we 
compare the results of the CPD algorithm with our two-stage 
method in different amounts of missing points, outliers and 
rotation degrees.   

III. MATERIAL AND METHODS 

A. Phantom 

Based on the proposed method by Surry et al [15], and our 
previous experiments [14], for preparing a brain phantom, 
we provided a 10% by weight Polyvinyl Alcohol (PVA) 
solution which was solidified properly by freeze–thaw 
process. Brain phantoms typically deform using inflation of 
an implanted catheter which could model the pushing-
outward tumors. Due to the fact that sometimes the brain 
collapses inwards, we made an effort to consider this type of 
deformations in our phantom. The recently designed 
phantom includes a flexible mesh implemented inside. At 
some points there are several inelastic fibers that create the 
connections between mesh nodes and controllable screws. In 
the inflatable phantoms, although the volume of injected 
fluid can be controlled (normally in the range of 10 ml), the 
amount of deformation in each point is unknown. This 
quantity should be calculated by registering MR images 
before and after the deformation. In the mentioned 
procedure, magnitude of error varies depending on the 
methods in which segmentation and registration are done. As 
an alternative, it is feasible to measure the deformation 
directly by means of controlling the mesh’s deformation and 
the movement of screws, as shown in Fig. 1. To the best of 
our knowledge, the proposed phantom is unique in terms of 

collapsing inward, though we hope to be able to improve it 
in the future. 

 Shape Context 

As a rich descriptor, shape context depicts the 
distribution of adjacent points in a log-polar histogram. A 
Chi-square (𝜒2) test is selected for the histogram similarity 
measurement [12], as formulated in (1). 
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Where,𝐶𝑖,𝑗 denotes the cost function of two points i and j 
and should be zero ideally for the best match. For each point 
in the reference set,(𝑅𝑖), we need to find the best match in 
the target, �𝑇𝑗�. ℎ𝑖(𝑘) and ℎ𝑗(𝑘) denote the K-bin 
normalized histogram at 𝑅𝑖 and 𝑇𝑗 respectively. More details 
about the shape histogram formation are available in 
Belongie’s paper [12], though there are some issues that 
should be addressed.  

In [12], finding points with most shape context similarity 
was considered equivalent to finding corresponding pair 
points. The validation of this point matching is somehow 
data dependent. In fact, one point in the first shape may be 
matched to two or more points far apart in the other shape. 
Consider the circled point in the red point set (Fig. 3), if we 
want to find its corresponding point from the blue point set, 
there are several alternatives based on the neighborhood of 
the circle’s radius. In an ideal situation, by extending the 
neighborhood’s radius, the probability of selecting a wrong 
corresponding point will be reduced. But in the presence of 
missing points and outliers, increasing the radius results in 
incremental differences among the shape contexts, and thus, 
one has to assent to more errors. Since we cannot increase 

 

 

Figure 1. Brain phantom. By moving up and down the screws, the 
internal mesh deformed to a certain extent. This deformation is 
well shown in MR images. 

5567



  

the neighborhood radius there must be a way to reject 
wrongly selected corresponding points.  

Another point to be mentioned is that in [12] for the sake 
of generality and simplicity, they expect no special features 
for the point selection step (like being landmarks, curvature 
extremum, etc.) and all of the points were considered in the 
registration procedure. In point sets with great amount of 
similar data, many points have almost the same shape 
context (think of a vessel with little curvature). This 
redundant data will add no new information and in presence 
of slight number of missing points or outliers could be 
simply misleading. So, we added a simple criterion for our 
point selection which is the maximum inner difference. To 
resolve these shortcomings, the following strategy was 
created as the modified shape based method: 

a. Point selection: as a first step, we sorted the target 
points based on their second order derivative of shape 
context to avoid redundancy. This approach resulted in a 
selection of well distributed, significant SC features among 
the redundant ones. We looked for various shape contexts 
with maximum inner difference criterion and employed a 
formula as (2, 3): 

       𝑓𝑗 = 𝑆𝑜𝑟𝑡 ��𝐶𝑡𝑖,𝑗
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Where 𝐶𝑡𝑖,𝑗 indicates shape context dissimilarity of 

target points with each other. Summation of 𝐶𝑡𝑖,𝑗 denotes the 
total SC difference of the point j with all other points in T. 

b. Finding corresponding points: Next, the 
corresponding point for the selected targets should be found. 
In this stage, there is not a large difference in comparison to 
the original method, except that the minimization was done 
in two-way manner. 
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As the reader may recall, the shape context (SC) matrix 
is in order of 𝐼 × 𝐽, where I and J are related to the reference 
and target point’s number, respectively. For the selected 
target point, j, the most similar reference point, i, will be 
determined (minimum of j’th column of SC). On the other 
hand, the point j must be the most similar point to i among 
the other points of target set (minimum in i’th row of SC). 
This double-check helps to reduce the probability of outlier 
selection. This routine will be continued iteratively until an 
adequate number of corresponding pairs are extracted. 

c. False corresponding rejection: As previously 
mentioned, “The best match” doesn’t always mean the best 
corresponding point. At this stage we must validate the 
accuracy of the corresponding points that were matched in 
the earlier stage. Regarding the fact that the brain 
displacement is not too much [5, 6], we expect the relative 

distances between selected points in both reference and 
target point sets to remain fixed, Fig. 4. So, we calculated 
the pair wise distances of each point set (ab, ac, bc … and 
a’b’, a’c’, b’c’… in Fig. 4) and compared the corresponding 
distances. As illustrated in the Fig. 4, the relative distance 
ratio (which is called RDR hereafter) in the original points 
are more or less the same, however, this ratio will not remain 
constant for the outliers.  

The correct scale ratio will be revealed according to the 
majority‘s RDR, and corresponding points with obvious 
difference in RDR regarded as possible outliers and will be 
rejected. Simply by applying the appropriate rigid 
transformation between extracted corresponding points, an 
effective initialization will be yielded. Henceforth, it is 
feasible to apply registration methods which need an 
acceptable initialization. Due to reasons mentioned earlier in 
the introduction section, CPD was selected 

IV. RESULTS 
In order to compare the algorithm’s performance with 

each other, proper error criterion should be determined first. 
This is based on how much of the algorithm’s target goal is 
achieved. As can be seen in Fig. 5, we assess our results with 
the deformed data before adding outlier and missing points. 
In this way, the one-to-one correspondence among the data 
will be established. 

To show the performance of the proposed algorithm, we 
compared the results with CPD and simple shape based 
algorithms, in different amounts of missing points, outliers 
and in-plane rotations. Each test was repeated 100 times and 
the RMS error was reported. Fig. 6 illustrates the algorithm’s 
sensitivity to different axes and different degrees of rotation. 
The in-plane rotations were accomplished in the range of 0°-
150° and the 3D rotations in the range of 0°-75°. In Fig. 7, 
the applied missing points were a combination of ensemble 
(0-20 %) and random (0-10 %) missing; and the outlier 
points were added in the range of 0-30 % of the total data. 
As it could be seen, our method has comparable 
performance in presence of outlier and missing points, in 
relation to CPD. 

V. CONCLUSION 
We proposed a two-stage registration method to improve 

the accuracy of brain Ultrasound-MR image registration in 
different initial conditions. As expected, our method 
removed the dependency on the initial condition, using the 
modified shape context descriptor. Although our method is 

 

Figure 3. Vessel mimicking centerline extracted from phantom MR image (left) 
and its deformed, noisy form (right). The black circled point may have more than 1 
similar correspond according to local shape similarity.  
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robust against various amounts of missing and outlier points 
to an acceptable extent, the CPD is the best approach in 
these cases. 

We tried to take the US imaging deficiencies into 
consideration so that the applied missing and outlier points 
were not far from reality, however, the study should be 
examined on real ultrasound data as well.  
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Figure 4. The points in 2 point sets should roughly preserve relative 
distances. In this example d’ can be considered as an outlier and the 
corresponding point d  rejected from selected points, due to: 

�𝑅𝐷𝑅 ≈ 𝑏𝑐
𝑏′𝑐′� ≈ 𝑐𝑒

𝑐′𝑒′� ≠ 𝑏𝑑
𝑏′𝑑′� �. 

    
Figure 6. Performance of our method in comparison with CPD, simple SC at different amount of rotation and in a different axis. From left to right, the 

rotation around x, y, z axis and 3d rotation is illustrated, respectively.  

 

Figure 5. Error calculation block diagram 

  
Figure 7.  Performance of our method in comparison with CPD, simple 
SC at different percent of missing and outlier. 

5569


